Skip to main content
Log in

Customised Selection of the Haptic Design in C-Loop Intraocular Lenses Based on Deep Learning

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to increase the probability of having a successful cataract post-surgery, the customisation of the haptic design of the intraocular lens (IOL) according to the characteristics of the patient is recommended. In this study, we present two prediction models based on deep neural networks (DNNs). One is capable of predicting the biomechanical stability of any C-loop IOL, whereas the other can predict the haptic design that fits a desired biomechanical response, enabling the selection of the optimal IOL as a function of the IOL diameter compression. The data used to feed the networks has been obtained from a validated finite element model in which multitude of geometries are tested according to the ISO 11979-3 compression test, a standard for the mechanical properties of the IOLs. The biomechanical response model provides a very high accurate response (Pearson’s r = 0.995), whilst the IOL haptic design model shows that several IOL designs can provide the same biomechanical response (Pearson’s r = 0.992). This study might help manufacturers and ophthalmologists both analyse any IOL design and select the best IOL for each patient. In order to facilitate its application, a graphical user interface (GUI) was created to show the potential of deep learning methods in cataract surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ariza-Gracia, M. Á., J. Zurita, D. P. Piñero, B. Calvo, and J. F. Rodríguez-Matas. Automatized patient-specific methodology for numerical determination of biomechanical corneal response. Ann. Biomed. Eng. 44:1753–1772, 2015.

    Article  Google Scholar 

  2. Barbé, C., N. Harran, and F. Goulle. Intra- and interobserver reliability of lens equatorial length measurement using 35-MHz ultrasound biomicroscopy in dogs with cataract. Vet. Ophthalmol. 20:329–334, 2016.

    Article  Google Scholar 

  3. Bozukova, D., C. Pagnoulle, and C. Jérôme. Biomechanical and optical properties of 2 new hydrophobic platforms for intraocular lenses. J. Cataract. Refract. Surg. 39:1404–1414, 2013.

    Article  Google Scholar 

  4. Bozukova, L., D. Werner, N. Mamalis, L. Gobin, C. Pagnoulle, A. Floyd, E. Liu, S. Stallings, and C. Morris. Double-C loop platform in combination with hydrophobic and hydrophilic acrylic intraocular lens materials. J. Cataract. Refract. Surg. 41:1490–1502, 2015.

    Article  Google Scholar 

  5. Brownlee, J. Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras. Vermont: Machine Learning Mastery, 2016.

    Google Scholar 

  6. BS EN ISO 11979-3:2012 Ophthalmic implants. Intraocular lenses. Mechanical properties and test methods. BSI Standards Limited, 2012

  7. Cabeza-Gil, I., M. Á. Ariza-Gracia, L. Remón, and B. Calvo. Systematic study on the biomechanical stability of C-loop intraocular lenses: Approach to an optimal design of the haptics. Ann. Biomed. Eng. 48:1127–1136, 2019.

    Article  Google Scholar 

  8. Cano-Espinosa, C., G. Gonzalez, G. R. Washko, M. Cazorla, and R. S. J. Estepar. Biomarker localization from deep learning regression networks. IEEE Trans. Med. Imaging 39:2121–2132, 2020.

    Article  Google Scholar 

  9. Chai, T., and R. R. Draxler. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature Geosci. Model Dev. 7:1247–1250, 2014.

    Article  Google Scholar 

  10. Chollet, F. Keras. 2015. https://github.com/fchollet/keras.

  11. Crnej, A., N. Hirnschall, Y. Nishi, V. Gangwani, J. Tabernero, P. Artal, and O. Findl. Impact of intraocular lens haptic design and orientation on decentration and tilt. J. Cataract. Refract. Surg. 37:1768–1774, 2011.

    Article  Google Scholar 

  12. Delfa, N. J. L., and J. R. Potvin. Predicting manual arm strength: A direct comparison between artificial neural network and multiple regression approaches. J. Biomech. 49:602–605, 2016.

    Article  Google Scholar 

  13. Du, X. L., W. B. Li, and B. J. Hu. Application of artificial intelligence in ophthalmology. Int. Ophthalmol. 11(9):1555, 2018.

    Google Scholar 

  14. Gao, X., S. Lin, and T. Y. Wong. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans. Biomed. 62:2693–2701, 2015.

    Article  Google Scholar 

  15. Ghaboussi, J., T.-H. Kwon, D. A. Pecknold, and Y. M. Hashash. Accurate intraocular pressure prediction from applanation response data using genetic algorithm and neural networks. J. Biomech, 42:2301–2306, 2009.

    Article  Google Scholar 

  16. González, D. C., and C. P. Bautista. Accuracy of a new intraocular lens power calculation method based on artificial intelligence. Eye 2020. https://doi.org/10.1038/s41433-020-0883-3.

    Article  PubMed  Google Scholar 

  17. Hung, C.-Y., W.-C. Chen, P.-T. Lai, C.-H. Lin. and C.-C. Lee. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. 39th Annual International Conference of the IEEE Eng Med Biol Soc, 2017.

  18. Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9:90–95, 2007.

    Article  Google Scholar 

  19. Krag, S., and T. T. Andreassen. Mechanical properties of the human posterior lens capsule. Invest. Ophthalmol. Vis. Sci. 44:691, 2003.

    Article  Google Scholar 

  20. Kingma, D. P., and J. A. Ba. A Method for Stochastic Optimization, 2014.

  21. Kriegeskorte, N., and T. Golan. Neural network models and deep learning. Curr. Biol. 29:R231–R236, 2019.

    Article  CAS  Google Scholar 

  22. Lane, S., P. Burgi, G. Milios, M. Orchowski, M. Vaughan, and E. Schwarte. Comparison of the biomechanical behavior of foldable intraocular lenses. J. Cataract. Refract. Surg. 30:2397–2402, 2004.

    Article  Google Scholar 

  23. Lane, S., S. Collins, K. Das, S. Maass, I. Thatthamla, H. Schatz, S. V. Noy, and R. Jain. Evaluation of intraocular lens stability. J. Cataract. Refract. Surg. 45(4):501–506, 2018.

    Article  Google Scholar 

  24. McMullen, R. J. and B. C. Gilger. Keratometry, biometry and prediction of intraocular lens power in the equine eye. Vet. Ophthalmol. 9:357–360, 2006.

    Article  Google Scholar 

  25. Moolayil, J. Learn keras for deep neural networks—a fast-track approach to modern deep learning with python, 2nd ed. New York: Springer, 2019.

    Book  Google Scholar 

  26. Ngarambe, J., A. Irakoze, G. Y. Yun, and G. Kim. Comparative performance of machine learning algorithms in the prediction of indoor daylight illuminances. Sustainability 12:4471, 2020.

    Article  Google Scholar 

  27. Pedrigi, R. M. and J. D. Humphrey. Computational model of evolving lens capsule biomechanics following cataract-like surgery. Ann. Biomed. Eng. 39:537–548, 2010.

    Article  Google Scholar 

  28. Ramachandran, P., B. Zoph, and Q. V. Le. Searching for Activation Functions. 2018.

  29. Rane, L., Z. Ding, A. H. McGregor, and A. M. J. Bull. Deep learning for musculoskeletal force prediction. Ann. Biomed. Eng. 47:778–789, 2018.

    Article  Google Scholar 

  30. Remón, L., D. Siedlecki, I. Cabeza-Gil, and B. Calvo. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling. J. Biomed. Opt. 23:1, 2018.

    PubMed  Google Scholar 

  31. Shah, G., M. Praveen, A. Vasavada, V. Vasavada, G. Rampal, and L. Shastry. Rotational stability of a toric intraocular lens: Influence of axial length and alignment in the capsular bag. J. Cataract. Refract. Surg. 38:54–59, 2012.

    Article  Google Scholar 

  32. Tan Q.-Q., J. Lin, J. Tian, X. Liao, C.-J. Lan. Objective optical quality in eyes with customized selection of aspheric intraocular lens implantation. BMC Ophthalmol. 19:152, 2019.

    Article  Google Scholar 

  33. Van Rossum, G., and F. Drake. Python 3 Reference Manual. Scotts Valley, CA.: CreateSpace, 2009

    Google Scholar 

  34. Yoo, T. K., I. H. Ryu, H. Choi, J. K. Kim, I. S. Lee, J. S. Kim, G. Lee, and T. H. Rim. Explainable machine learning approach as a tool to understand factors used to select the refractive surgery technique on the expert level. Transl. Vis. Sci. Technol. 9:8, 2020.

    Article  Google Scholar 

  35. Yu, D., Y. Qing, Z. Jianxun, and D. Jun. An artificial neural network approach to the predictive modeling of tensile force during renal suturing. Ann. Biomed. Eng. 41:786–794, 2012.

    Article  Google Scholar 

  36. Zarbin, M. A. Artificial intelligence: Quo vadis? Transl. Vis. Sci/ Technol. 9:1, 2020.

    Article  Google Scholar 

  37. Zeng, L. and F. Fang. Advances and challenges of intraocular lens design [invited]. Appl. Opt. 57:7363, 2018.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research support from the Spanish Ministerio de ciencia, innovacion y universidades (Grant DPI2017-84047-R) and the Department of Industry and Innovation (Government of Aragon) through the research group Grant T24-20R (cofinanciado con Feder 2014-2020: Construyendo Europa desde Aragon). The authors also acknowledge the support of the Tissue Characterization Platform of CIBER-BBN, an initiative funded by the VI National R & D & i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. I. Cabeza-Gil and I. Ríos-Ruiz were supported by PRE2018-084021 and Government of Aragon, order IIU/1408/2018, respectively.

Disclosure

No author has a financial or proprietary interest in any material or method mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Cabeza-Gil.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 257793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabeza-Gil, I., Ríos-Ruiz, I. & Calvo, B. Customised Selection of the Haptic Design in C-Loop Intraocular Lenses Based on Deep Learning. Ann Biomed Eng 48, 2988–3002 (2020). https://doi.org/10.1007/s10439-020-02636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02636-4

Keywords

Navigation