Skip to main content
Log in

Six-Degree-of-Freedom Tibiofemoral and Patellofemoral Joint Motion During Activities of Daily Living

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to measure the three-dimensional movements of the femur, tibia and patella in healthy young people during activities of daily living. A mobile biplane X-ray imaging system was used to obtain simultaneous measurements of six-degree-of-freedom (6-DOF) tibiofemoral and patellofemoral kinematics and femoral condylar motion in ten participants during standing, level walking, downhill walking, stair ascent, stair descent and open-chain (non-weightbearing) knee flexion. Seven of the eleven secondary motions at the knee—three translations at the tibiofemoral joint, three translations at the patellofemoral joint, and patellar flexion—were coupled to the tibiofemoral flexion angle (r2 ≥ 0.71). Tibial internal–external rotation, tibial abduction–adduction, patellar rotation, and patellar tilt were each weakly related to the tibiofemoral flexion angle (r2 ≤ 0.45). The displacements of the femoral condyles were also coupled to the tibiofemoral flexion angle (r2 ≥ 0.70), with the lateral condyle translating further on the tibial plateau than the medial condyle. The center of rotation of the tibiofemoral joint in the transverse plane was located on the medial side in all activities. These findings expand our understanding of the kinematic function of the healthy knee and may be relevant to a range of applications in biomechanics, including the design of prosthetic knee implants and the development of knee models for use in full-body simulations of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andriacchi, T., E. Alexander, M. Toney, C. Dyrby, and J. Sum. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J. Biomech. Eng. 120:743–749, 1998.

    Article  CAS  Google Scholar 

  2. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin. Orthop. Relat. Res. 1976–2007(454):81–88, 2007.

    Article  Google Scholar 

  3. Churchill, D. L., S. J. Incavo, C. C. Johnson, and B. D. Beynnon. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin. Orthop. Relat. Res. 356:111–118, 1998.

    Article  Google Scholar 

  4. DeFrate, L. E., R. Papannagari, T. J. Gill, J. M. Moses, N. P. Pathare, and G. Li. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am. J. Sports Med. 34:1240–1246, 2006.

    Article  Google Scholar 

  5. Dyrby, C. O., and T. P. Andriacchi. Secondary motions of the knee during weight bearing and non-weight bearing activities. J. Orthop. Res. 22:794–800, 2004.

    Article  Google Scholar 

  6. Farrokhi, S., B. Meholic, W. N. Chuang, J. A. Gustafson, G. K. Fitzgerald, and S. Tashman. Altered frontal and transverse plane tibiofemoral kinematics and patellofemoral malalignments during downhill gait in patients with mixed knee osteoarthritis. J. Biomech. 48:1707–1712, 2015.

    Article  Google Scholar 

  7. Freeman, M. A., and V. Pinskerova. The movement of the normal tibio-femoral joint. J. Biomech. 38:197–208, 2005.

    Article  CAS  Google Scholar 

  8. Gale, T., and W. Anderst. Asymmetry in healthy adult knee kinematics revealed through biplane radiography of the full gait cycle. J. Orthop. Res. 37:609–614, 2019.

    Article  CAS  Google Scholar 

  9. Goodfellow, J., and J. O’Connor. The mechanics of the knee and prosthesis design. J. Bone Jt. Surg. Br. 60:358–369, 1978.

    Article  Google Scholar 

  10. Gray, H. A., S. Guan, and M. G. Pandy. Accuracy of mobile biplane X-ray imaging in measuring 6-degree-of-freedom patellofemoral kinematics during overground gait. J. Biomech. 57:152–156, 2017.

    Article  Google Scholar 

  11. Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging. J. Orthop. Res. 37:615–630, 2019.

    Article  Google Scholar 

  12. Gray, H. A., S. Guan, T. J. Young, M. M. Dowsey, P. F. Choong, and M. G. Pandy. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J. Orthop. Res. 38:1753–1768, 2020.

    Article  Google Scholar 

  13. Guan, S., H. A. Gray, F. Keynejad, and M. G. Pandy. Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans. Med. Imaging 35:326–336, 2016.

    Article  Google Scholar 

  14. Hirokawa, S., M. Solomonow, Y. Lu, Z.-P. Lou, and R. D’Ambrosia. Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am. J. Sports Med 20:299–306, 1992.

    Article  CAS  Google Scholar 

  15. Hollister, A. M., S. Jatana, A. K. Singh, W. W. Sullivan, and A. G. Lupichuk. The axes of rotation of the knee. Clin. Orthop. Relat. Res. 1976–2007(290):259–268, 1993.

    Google Scholar 

  16. Huberti, H. H., and W. C. Hayes. Contact pressures in chondromalacia patellae and the effects of capsular reconstructive procedures. J. Orthop. Res. 6:499–508, 1988.

    Article  CAS  Google Scholar 

  17. Kefala, V., A. J. Cyr, M. D. Harris, D. R. Hume, B. S. Davidson, R. H. Kim, and K. B. Shelburne. Assessment of knee kinematics in older adults using high-speed stereo radiography. Med. Sci. Sports Exerc. 49:2260–2267, 2017.

    Article  Google Scholar 

  18. Koh, T. J., M. D. Grabiner, and R. J. De Swart. In vivo tracking of the human patella. J. Biomech. 25:637–643, 1992.

    Article  CAS  Google Scholar 

  19. Koo, S., and T. P. Andriacchi. The knee joint center of rotation is predominantly on the lateral side during normal walking. J. Biomech. 41:1269–1273, 2008.

    Article  Google Scholar 

  20. Koo, Y.-J., and S. Koo. Three-dimensional kinematic coupling of the healthy knee during treadmill walking. J. Biomech. Eng. 141:081012, 2019.

    Article  Google Scholar 

  21. Kozanek, M., A. Hosseini, F. Liu, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J. Biomech. 42:1877–1884, 2009.

    Article  Google Scholar 

  22. Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, 3rd, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.

    Article  CAS  Google Scholar 

  23. Li, G., T. Rudy, M. Sakane, A. Kanamori, C. Ma, and S.-Y. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL. J. Biomech. 32:395–400, 1999.

    Article  CAS  Google Scholar 

  24. Li, J.-S., A. Hosseini, L. Cancre, N. Ryan, H. E. Rubash, and G. Li. Kinematic characteristics of the tibiofemoral joint during a step-up activity. Gait Posture 38:712–716, 2013.

    Article  Google Scholar 

  25. Liu, F., M. Kozanek, A. Hosseini, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43:658–665, 2010.

    Article  Google Scholar 

  26. Lu, T.-W., T.-Y. Tsai, M.-Y. Kuo, H.-C. Hsu, and H.-L. Chen. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med. Eng. Phys. 30:1004–1012, 2008.

    Article  CAS  Google Scholar 

  27. Moore, D. S., W. I. Notz, and M. A. Fligner. The Basic Practice of Statistics. New York: Macmillan Higher Education, 2015.

    Google Scholar 

  28. Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: clinical motions and patellofemoral indices. J. Orthop. Res. 26:1067–1074, 2008.

    Article  Google Scholar 

  29. Pieper, S., B. Lorensen, W. Schroeder, and R. Kikinis. The NA-MIC kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 698–701.

  30. Reinschmidt, C., A. Van Den Bogert, A. Lundberg, B. Nigg, N. Murphy, A. Stacoff, and A. Stano. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109, 1997.

    Article  Google Scholar 

  31. Scott, G., M. A. Imam, A. Eifert, M. Freeman, V. Pinskerova, R. Field, J. Skinner, and S. A. Banks. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Jt. Res. 5:80–86, 2016.

    Article  CAS  Google Scholar 

  32. Suzuki, T., A. Hosseini, J. S. Li, T. J. Gill, IV, and G. Li. In vivo patellar tracking and patellofemoral cartilage contacts during dynamic stair ascending. J. Biomech. 45:2432–2437, 2012.

    Article  Google Scholar 

  33. Van de Velde, S. K., T. J. Gill, and G. Li. Dual fluoroscopic analysis of the posterior cruciate ligament-deficient patellofemoral joint during lunge. Med. Sci. Sports Exerc. 41:1198–1205, 2009.

    Article  Google Scholar 

  34. Varadarajan, K. M., A. A. Freiberg, T. J. Gill, H. E. Rubash, and G. Li. Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion. J. Biomech. Eng. 132:061008, 2010.

    Article  Google Scholar 

  35. Wilson, D., J. Feikes, and J. O’Connor. Ligaments and articular contact guide passive knee flexion. J. Biomech. 31:1127–1136, 1998.

    Article  CAS  Google Scholar 

  36. Wilson, D. R., J. Feikes, A. Zavatsky, and J. O’Connor. The components of passive knee movement are coupled to flexion angle. J. Biomech. 33:465–473, 2000.

    Article  CAS  Google Scholar 

  37. Winter, D., and H. Yack. EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 67:402–411, 1987.

    Article  CAS  Google Scholar 

  38. Yamokoski, J. D., and S. A. Banks. Does close proximity robot motion tracking alter gait? Gait Posture 34:508–513, 2011.

    Article  Google Scholar 

  39. Zavatsky, A. B., D. J. Beard, and J. J. O’Connor. Cruciate ligament loading during isometric muscle contractions: a theoretical basis for rehabilitation. Am. J. Sports Med. 22:418–423, 1994.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Discovery Projects grant (DP120101973) from the Australian Research Council and the Victorian Orthopaedic Research Trust. LT was supported in part by a Postgraduate Scholarship provided by the University of Melbourne.

Author Contributions

HAG, SG, AGS, RS, and MGP designed the study. MGP and RS obtained funding for the research. LTT, SG, and HAG performed the data collection and analysis. LTT, SG, HAG and MGP interpreted the data and drafted the manuscript. All authors edited, revised, and approved the final version. MGP was the chief investigator for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Pandy.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomeer, L., Guan, S., Gray, H. et al. Six-Degree-of-Freedom Tibiofemoral and Patellofemoral Joint Motion During Activities of Daily Living. Ann Biomed Eng 49, 1183–1198 (2021). https://doi.org/10.1007/s10439-020-02646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02646-2

Keywords

Navigation