Skip to main content
Log in

Balance Between Mechanical Stability and Mechano-Biology of Fracture Healing Under Volar Locking Plate

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The application of volar locking plate (VLP) is promising in the treatment of dorsally comminuted and displaced fracture. However, the optimal balance between the mechanical stability of VLP and the mechanobiology at the fracture site is still unclear. The purpose of this study is to develop numerical models in conjunction with experimental studies to identify the favourable mechanical microenvironment for indirect healing, by optimizing VLP configuration and post-operative loadings for different fracture geometries. The simulation results show that the mechanical behaviour of VLP is mainly governed by the axial compression. In addition, the model shows that, under relatively large gap size (i.e., 3–5 mm), the increase of FWL could enhance chondrocyte differentiation while a large BPD could compromise the mechanical stability of VLP. Importantly, bending moment produced by wrist flexion/extension and torsion moment produced from forearm rotation could potentially hinder endochondral ossification at early stage of healing. The developed model could potentially assist orthopaedic surgeons in surgical pre-planning and designing post-operation physical therapy for treatment of distal radius fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abramo, A., P. Kopylov, M. Geijer, and M. Tagil. Open reduction and internal fixation compared to closed reduction and external fixation in distal radial fractures A randomized study of 50 patients. Acta Orthop. 80:478–485, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Augat, P., J. Burger, S. Schorlemmer, T. Henke, M. Peraus, and L. Claes. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J. Orthop. Res. 21:1011–1017, 2003.

    Article  PubMed  Google Scholar 

  3. Augat, P., K. Margevicius, J. Simon, S. Wolf, G. Suger, and L. Claes. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J. Orthop. Res. 16:475–481, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Baca, V., Z. Horak, P. Mikulenka, and V. Dzupa. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Med. Eng. Phys. 30:924–930, 2008.

    Article  PubMed  Google Scholar 

  5. Borgiani, E., C. Figge, B. Kruck, B. M. Willie, G. N. Duda, and S. Checa. Age-related changes in the mechanical regulation of bone healing are explained by altered cellular mechanoresponse. J. Bone Miner. Res. 34:1923–1937, 2019.

    Article  CAS  PubMed  Google Scholar 

  6. Caiti, G., J. G. G. Dobbe, E. Bervoets, M. Beerens, S. D. Strackee, J. Strijkers, and G. J. Streekstra. Biomechanical considerations in the design of patient-specific fixation plates for the distal radius. Med. Biol. Eng. Comput. 57:1099–1107, 2019.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, A. C. Y., Y. H. Lin, H. N. Kuo, T. C. Yu, M. T. Sun, and C. L. Lin. Design optimisation and experimental evaluation of dorsal double plating fixation for distal radius fracture. Inj. Int. J. Care Inj. 44:527–534, 2013.

    Article  Google Scholar 

  8. Claes, L., P. Augat, G. Suger, and H. J. Wilke. Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15:577–584, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Claes, L., S. Recknagel, and A. Ignatius. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8:133–143, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Claes, L., M. Reusch, M. Gockelmann, M. Ohnmacht, T. Wehner, M. Amling, F. T. Beil, and A. Ignatius. Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. J. Orthop. Res. 29:425–432, 2011.

    Article  PubMed  Google Scholar 

  11. Cullinane, D. M., A. Fredrick, S. R. Eisenberg, D. Pacicca, M. V. Elman, C. Lee, K. Salisbury, L. C. Gerstenfeld, and T. A. Einhorn. Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J. Orthop. Res. 20:579–586, 2002.

    Article  PubMed  Google Scholar 

  12. Cullinane, D. M., K. T. Salisbury, Y. Alkhiary, S. Eisenberg, L. Gerstenfeld, and T. A. Einhorn. Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development? J. Exp. Biol. 206:2459–2471, 2003.

    Article  PubMed  Google Scholar 

  13. Dahl, W. J., P. F. Nassab, K. M. Burgess, P. D. Postak, P. J. Evans, W. H. Seitz, A. S. Greenwald, and J. N. Lawton. Biomechanical properties of fixed-angle volar distal radius plates under dynamic loading. J. Hand Surg. Am. 37A:1381–1387, 2012.

    Article  Google Scholar 

  14. De Baere, T., F. Lecouvet, and O. Barbier. Breakage of a volar locking plate after delayed union of a distal radius fracture. Acta Orthop. Belg. 73:785, 2007.

    PubMed  Google Scholar 

  15. Epari, D. R., H. Schell, H. J. Bail, and G. N. Duda. Instability prolongs the chondral phase during bone healing in sheep. Bone 38:864–870, 2006.

    Article  PubMed  Google Scholar 

  16. Foo, T.-L., A. W. Gan, T. Soh, and W. Y. Chew. Mechanical failure of the distal radius volar locking plate. J. Orthop. Surg. 21:332–336, 2013.

    Article  Google Scholar 

  17. Formica, D., S. K. Charles, L. Zollo, E. Guglielmelli, N. Hogan, and H. I. Krebs. The passive stiffness of the wrist and forearm. J. Neurophysiol. 108:1158–1166, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ganadhiepan, G., S. Miramini, M. Patel, P. Mendis, and L. H. Zhang. Bone fracture healing under Ilizarov fixator: influence of fixator configuration, fracture geometry, and loading. Int. J. Numer. Methods Biomed. Eng. 35:18, 2019.

    Google Scholar 

  19. Ghimire, S., S. Miramini, M. Richardson, P. Mendis, and L. H. Zhang. Role of dynamic loading on early stage of bone fracture healing. Ann. Biomed. Eng. 46:1768–1784, 2018.

    Article  PubMed  Google Scholar 

  20. Hayward, L. N. M., and E. F. Morgan. Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Biomech. Model. Mechanobiol. 8:447–455, 2009.

    Article  PubMed  Google Scholar 

  21. Horn, C., S. Döbele, H. Vester, A. Schäffler, M. Lucke, and U. Stöckle. Combination of interfragmentary screws and locking plates in distal meta-diaphyseal fractures of the tibia: a retrospective, single-centre pilot study. Inj. Int. J. Care Inj. 42:1031–1037, 2011.

    Article  CAS  Google Scholar 

  22. Hsiao, C. K., Y. K. Tu, C. H. Lee, C. Y. Yen, F. C. Kao, and Y. J. Tsai. Biomechanical study on the cyclic stability of distal radius C2 type osteoporotic fractures using locking plates in a cadaver model. J. Med. Biol. Eng. 38:707–714, 2018.

    Article  Google Scholar 

  23. International A. ASTM F67-13-Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). ASTM International West Conshohocken, 2017.

  24. Isaksson, H., O. Comas, C. C. Van Donkelaar, J. Mediavilla, W. Wilson, R. Huiskes, and K. Ito. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity. J. Biomech. 40:2002–2011, 2007.

    Article  PubMed  Google Scholar 

  25. Kelly, D. J., and P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38:1413–1422, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Krischak, G. D., A. Janousek, S. Wolf, P. Augat, L. Kinzl, and L. E. Claes. Effects of one-plane and two-plane external fixation on sheep osteotomy healing and complications. Clin. Biomech. 17:470–476, 2002.

    Article  Google Scholar 

  27. Kuo, L. C., T. H. Yang, Y. Y. Hsu, P. T. Wu, C. L. Lin, H. Y. Hsu, and I. M. Jou. Is progressive early digit mobilization intervention beneficial for patients with external fixation of distal radius fracture? A pilot randomized controlled trial. Clin. Rehabil. 27:983–993, 2013.

    Article  PubMed  Google Scholar 

  28. Lacroix, D., and P. J. Prendergast. A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35:1163–1171, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. Leong, P. L., and E. F. Morgan. Measurement of fracture callus material properties via nanoindentation. Acta Biomater. 4:1569–1575, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin, Y. H., C. L. Lin, H. N. Kuo, M. T. Sun, and A. C. Y. Chen. Biomechanical analysis of volar and dorsal double locking plates for fixation in comminuted extra-articular distal radius fractures: a 3D finite element study. J. Med. Biol. Eng. 32:349–355, 2012.

    Article  Google Scholar 

  31. Luo, P. B., J. J. Lou, and S. W. Yang. Pain management during rehabilitation after distal radius fracture stabilized with volar locking plate: a Prospective Cohort Study. Biomed Res. Int. 2018. https://doi.org/10.1155/2018/5786089.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marsell, R., and T. A. Einhorn. The biology of fracture healing. Inj. Int. J. Care Inj. 42:551–555, 2011.

    Article  Google Scholar 

  33. McCartney, W., B. J. Mac Donald, and M. S. J. Hashmi. Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading. J. Mater. Process. Technol. 169:476–484, 2005.

    Article  Google Scholar 

  34. McKibbin, B. The biology of fracture healing in long bones. J. Bone Joint Surg. 60:150–162, 1978.

    Article  Google Scholar 

  35. Meeson, R., M. Moazen, A. Sanghani-Kerai, L. Osagie-Clouard, M. Coathup, and G. Blunn. The influence of gap size on the development of fracture union with a micro external fixator. J. Mech. Behav. Biomed. Mater. 99:161–168, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mehboob, H., J. Kim, A. Mehboob, and S. H. Chang. How post-operative rehabilitation exercises influence the healing process of radial bone shaft fractures fixed by a composite bone plate. Compos. Struct. 159:307–315, 2017.

    Article  Google Scholar 

  37. Miramini, S., D. W. Smith, L. Zhang, and B. S. Gardiner. The spatio-temporal mechanical environment of healthy and injured human cartilage during sustained activity and its role in cartilage damage. J. Mech. Behav. Biomed. Mater. 74:1–10, 2017.

    Article  CAS  PubMed  Google Scholar 

  38. Miramini, S., Y. Yang, and L. H. Zhang. A probabilistic-based approach for computational simulation of bone fracture healing. Comput. Methods Programs Biomed. 180:12, 2019.

    Article  Google Scholar 

  39. Miramini, S., L. H. Zhang, M. Richardson, P. Mendis, and P. R. Ebeling. Influence of fracture geometry on bone healing under locking plate fixations: a comparison between oblique and transverse tibial fractures. Med. Eng. Phys. 38:1100–1108, 2016.

    Article  PubMed  Google Scholar 

  40. Miramini, S., L. H. Zhang, M. Richardson, P. Mendis, A. Oloyede, and P. Ebeling. The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation, Australas. Phys. Eng. Sci. Med. 39:123–133, 2016.

    Article  Google Scholar 

  41. Orbay, J. L., and D. L. Fernandez. Volar fixation for dorsally displaced fractures of the distal radius: a preliminary report. J. Hand Surg.-Am. 27A:205–215, 2002.

    Article  Google Scholar 

  42. Osada, D., S. F. Viegas, M. A. Shah, R. P. Morris, and R. M. Patterson. Comparison of different distal radius dorsal and volar fracture fixation plates: a biomechanical study. J. Hand Surg. Am. 28A:94–104, 2003.

    Article  Google Scholar 

  43. Palomares, K. T. S., R. E. Gleason, Z. D. Mason, D. M. Cullinane, T. A. Einhorn, L. C. Gerstenfeld, and E. F. Morgan. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J. Orthop. Res. 27:1123–1132, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Perren, S. M. Physical and biological aspects of fracture-healing with special reference to internal-fixation. Clin. Orthop. Relat. Res. 138:175–196, 1979.

    Google Scholar 

  45. Perren, S. M. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Joint Surg. Br. 84B:1093–1110, 2002.

    Article  Google Scholar 

  46. Perren, S. M. Fracture healing: the evolution of our understanding. Acta Chirurgiae Orthopaedicae Et Traumatologiae Cechoslovaca 75:241–246, 2008.

    PubMed  Google Scholar 

  47. Poeze, M., P. Hannemann, P. Brink, and D. Disseldorp. Is bone grafting necessary in the treatment of malunited distal radius fractures? J. Wrist Surg. 04:207–213, 2015.

    Article  Google Scholar 

  48. Prendergast, P., S. Checa, and D. Lacroix. Computational models of tissue differentiation. In: MRK Mofrad Computational Modeling in Biomechanics, edited by S. De, and F. Guilak. Berlin: Springer, 2010, pp. 353–372.

    Chapter  Google Scholar 

  49. Prendergast, P. J., R. Huiskes, and K. Soballe. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30:539–548, 1997.

    Article  CAS  PubMed  Google Scholar 

  50. Reich, K. M., S. Tangl, P. Heimel, S. Lettner, A. Ignatius, L. E. Claes, J. Pfeil, A. Janousek, and H. Redl. Histomorphometric analysis of callus formation stimulated by axial dynamisation in a standardised ovine osteotomy model. Biomed. Res. Int. 2019:12, 2019.

    Article  Google Scholar 

  51. Shinohara, T., and H. Hirata. Distal radius nonunion after volar locking plate fixation of a distal radius fracture: a case report. Nagoya J. Med. Sci. 79:551–557, 2017.

    PubMed  PubMed Central  Google Scholar 

  52. Stoffel, K., U. Dieter, G. Stachowiak, A. Gachter, and M. S. Kuster. Biomechanical testing of the LCP: how can stability in locked internal fixators be controlled? Inj. Int. J. Care Inj. 34:11–19, 2003.

    Article  Google Scholar 

  53. Strauss, E. J., R. Schwarzkopf, F. Kummer, and K. A. Egol. The current status of locked plating: the good, the bad, and the ugly. J. Orthop. Trauma 22:479–486, 2008.

    Article  PubMed  Google Scholar 

  54. Tarallo, L., R. Mugnai, R. Adani, and F. Catani. Malunited extra-articular distal radius fractures: corrective osteotomies using volar locking plate. J. Orthop. Traumatol. 15:285–290, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vetter, A., D. R. Epari, R. Seidel, H. Schell, P. Fratzl, G. N. Duda, and R. Weinkamer. Temporal tissue patterns in bone healing of sheep. J. Orthop. Res. 28:1440–1447, 2010.

    Article  PubMed  Google Scholar 

  56. Zhang, L. Computational modeling of bone fracture healing by using the theory of porous media. In: Frontiers in Applied Mechanics. London: Imperial College Press, 2015, pp. 127–128.

  57. Zhang, L. H., S. Miramini, M. Richardson, P. Ebeling, D. Little, Y. Yang, and Z. Y. Huang. Computational modelling of bone fracture healing under partial weight-bearing exercise. Med. Eng. Phys. 42:65–72, 2017.

    Article  PubMed  Google Scholar 

  58. Zhang, L., S. Miramini, M. Richardson, P. Mendis, and P. Ebeling. The role of impairment of mesenchymal stem cell function in osteoporotic bone fracture healing. Australas. Phys. Eng. Sci. Med. 40:603–610, 2017.

    Article  PubMed  Google Scholar 

  59. Zhang, L., M. Richardson, and P. Mendis. Role of chemical and mechanical stimuli in mediating bone fracture healing. Clin. Exp. Pharmacol. Physiol. 39:706–710, 2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Austofix, AOA Research Foundation (Project grant 403), Epworth HealthCare and the University of Melbourne for their support.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihai Zhang.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Miramini, S., Patel, M. et al. Balance Between Mechanical Stability and Mechano-Biology of Fracture Healing Under Volar Locking Plate. Ann Biomed Eng 49, 2533–2553 (2021). https://doi.org/10.1007/s10439-021-02815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02815-x

Keywords

Navigation