Skip to main content
Log in

Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Knowledge of the mechanical properties of blood vessels and determining appropriate constitutive relations are essential in developing methodologies for accurate prognosis of vascular diseases. We examine the directional variation of the mechanical properties of the porcine thoracic aorta by performing uniaxial extension tests on dumbbell-shaped specimens cut at five different orientations with respect to the circumferential direction of the aorta. Specimens in all the orientations considered exhibit a nonlinear constitutive response that is typical of collagenous soft tissues. Shear strain under uniaxial extension demonstrates clearly discernible anisotropy of the mechanical response of the porcine aorta, and samples oriented at 45\(^{\circ }\) and 60\(^{\circ }\) with respect to the circumferential direction show a peculiar crescent-shaped shear strain-nominal stretch response not displayed by axial and circumferential specimens. Failure stress indicates decreasing tensile strength of the porcine aortic wall from the circumferential direction to the longitudinal direction. Furthermore, we determine the material parameters for the four-fiber-family and Gasser–Holzapfel–Ogden models from the mechanical response data of the circumferential and longitudinal specimens. It is shown how the material parameters derived from the uniaxial tests on circumferential and longitudinal specimens are insufficient to characterize the response of off-axis specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Atienza, J. M., G. V. Guinea, F. J. Rojo, R. J. Burgos, C. García-Montero, F. J. Goicolea, P. Aragoncillo, and M. Elices. The influence of pressure and temperature on the behavior of the human aorta and carotid arteries. Revista Española de Cardiología 60(3):259–267, 2007.

    Article  Google Scholar 

  2. Baek, S., R. L. Gleason, K. Rajagopal, and J. Humphrey. Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196(31–32): 3070–3078, 2007.

    Article  Google Scholar 

  3. Blaber, J., B. Adair, and A. Antoniou. Ncorr: open-source 2d digital image correlation matlab software. Exp. Mech. 55(6):1105–1122, 2015.

    Article  Google Scholar 

  4. Chagnon, G., M. Rebouah, and D. Favier. Hyperelastic energy densities for soft biological tissues: a review. J. Elast. 120(2):129–160, 2015.

  5. Chen, Q., Y. Wang, and Z.-Y. Li. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests. Biomed. Eng. 15(2):493–506, 2016.

    Google Scholar 

  6. Dobrin, P. B. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 19(5):351–358, 1986.

    Article  CAS  Google Scholar 

  7. Duprey, A., O. Trabelsi, M. Vola, J.-P. Favre, and S. Avril. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 42:273–285, 2016.

    Article  Google Scholar 

  8. Ferruzzi, J., D. A. Vorp, and J. Humphrey. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J. R. Soc. Interface 8(56):435–450, 2011.

    Article  CAS  Google Scholar 

  9. García-Herrera, C. M., D. J. Celentano, M. A. Cruchaga, F. J. Rojo, J. M. Atienza, G. V. Guinea, and J. M. Goicolea. Mechanical characterisation of the human thoracic descending aorta: experiments and modelling. Comput. Methods Biomech. Biomed. Eng. 15(2):185–193, 2012.

    Article  Google Scholar 

  10. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

    Article  Google Scholar 

  11. Gundiah, N., M. B. Ratcliffe, and L. A. Pruitt. The biomechanics of arterial elastin. J. Mech. Behav. Biomed. Mater. 2(3):288–296, 2009.

    Article  Google Scholar 

  12. Hill, M. R., X. Duan, G. A. Gibson, S. Watkins, and A. M. Robertson. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45(5):762–771, 2012.

    Article  Google Scholar 

  13. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol.-Heart Circ. Physiol. 289(5):H2048–H2058, 2005.

    Article  CAS  Google Scholar 

  14. Humphrey, J. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50(2):53–78, 2008.

    Article  CAS  Google Scholar 

  15. Humphrey, J., and K. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.

    Article  Google Scholar 

  16. Iliopoulos, D. C., R. P. Deveja, E. P. Kritharis, D. Perrea, G. D. Sionis, K. Toutouzas, C. Stefanadis, and D. P. Sokolis. Regional and directional variations in the mechanical properties of ascending thoracic aortic aneurysms. Med. Eng. Phys. 31(1):1–9, 2009.

    Article  Google Scholar 

  17. Jiang, M., R. L. Sridhar, A. B. Robbins, A. D. Freed, and M. R. Moreno. A versatile biaxial testing platform for soft tissues. J. Mech. Behav. Biomed. Mater. 114:104144, 2020.

    Article  Google Scholar 

  18. Korenczuk, C. E., L. E. Votava, R. Y. Dhume, S. B. Kizilski, G. E. Brown, R. Narain, and V. H. Barocas. Isotropic failure criteria are not appropriate for anisotropic fibrous biological tissues. J. Biomech. Eng. 139:7, 2017.

    Article  Google Scholar 

  19. Liu, M., H. Dong, X. Lou, G. Iannucci, E. P. Chen, B. G. Leshnower, and W. Sun. A novel anisotropic failure criterion with dispersed fiber orientations for aortic tissues. J. Biomech. Eng. 142:11, 2020.

    Google Scholar 

  20. Myneni, M., A. Rao, M. Jiang, M. R. Moreno, K. Rajagopal, and C. C. Benjamin. Segmental variations in the peel characteristics of the porcine thoracic aorta. Ann. Biomed. Eng. 48(6):1751–1767, 2020.

    Article  Google Scholar 

  21. O’Leary, S. A., B. J. Doyle, and T. M. McGloughlin. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 37:165–173, 2014.

    Article  Google Scholar 

  22. Patel, D. J., D. L. Fry, and J. S. Janicki. The elastic symmetry of arterial segments in dogs. Circ. Res. 24(1):1–8, 1969.

    Article  CAS  Google Scholar 

  23. Peña, J. A., M. A. Martínez, and E. Peña. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J. Mech. Behav. Biomed. Mater. 50:55–69, 2015.

    Article  Google Scholar 

  24. Raghavan, M., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.

    Article  CAS  Google Scholar 

  25. Raghavan, M. L., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24(5):573–582, 1996.

    Article  CAS  Google Scholar 

  26. Rajagopal, K. Multiple configurations in continuum mechanics. Reports of the institute for computational and applied mechanics 6, 1995.

  27. Rajagopal, K. R., and K. Rajagopal. Modeling of the aorta: complexities and inadequacies. AORTA J. 8(4):91, 2020.

    Article  Google Scholar 

  28. Rajagopal, K. R., and A. R. Srinivasa. On the thermomechanics of materials that have multiple natural configurations part i: Viscoelasticity and classical plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 55(5):861–893, 2004.

    Article  Google Scholar 

  29. Roy, C. S. The elastic properties of the arterial wall. J. Physiol. 3(2):125–159, 1881.

    Article  CAS  Google Scholar 

  30. Sang, C., S. Maiti, R. N. Fortunato, J. Kofler, and A. M. Robertson. A uniaxial testing approach for consistent failure in vascular tissues. J. Biomech. Eng. 140:6, 2018.

    Article  Google Scholar 

  31. Sassani, S. G., Tsangaris, S., and Sokolis, D. P. Layer-and region-specific material characterization of ascending thoracic aortic aneurysms by microstructure-based models. J. Biomech. 48(14):3757–3765, 2015.

    Article  Google Scholar 

  32. Schriefl, A. J., T. Schmidt, D. Balzani, G. Sommer, and G. A. Holzapfel. Selective enzymatic removal of elastin and collagen from human abdominal aortas: Uniaxial mechanical response and constitutive modeling. Acta Biomater. 17:125–136, 2015.

    Article  CAS  Google Scholar 

  33. Schroeder, F., S. Polzer, M. Slažanský, V. Man, and P. Skácel. Predictive capabilities of various constitutive models for arterial tissue. J. Mech. Behav. Biomed. Mater. 78:369–380, 2018.

    Article  Google Scholar 

  34. Sherifova, S., and G. A. Holzapfel. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: a review. Acta Biomater. 99:1–17, 2019.

    Article  CAS  Google Scholar 

  35. Sherifova, S., G. Sommer, C. Viertler, P. Regitnig, T. Caranasos, M. A. Smith, B. E. Griffith, R. W. Ogden, and G. A. Holzapfel. Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomater. 99:443–456, 2019.

  36. Vaishnav, R. N., J. Vossoughi, D. J. Patel, L. N. Cothran, B. R. Coleman, and E. L. Ison-Franklin. Effect of hypertension on elasticity and geometry of aortic tissue from dogs. J. Biomech. Eng. 112(5):70–74, 1990.

    Article  CAS  Google Scholar 

  37. Vorp, D. A., B. J. Schiro, M. P. Ehrlich, T. S. Juvonen, M. A. Ergin, and B. P. Griffith. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann. Thorac. Surg. 75(4):1210–1214, 2003.

    Article  Google Scholar 

  38. Wang, Y., J. Hahn, and Y. Zhang. Mechanical properties of arterial elastin with water loss. J. Biomech. Eng. 140:4, 2018.

    Google Scholar 

  39. Weisbecker, H., D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 12:93–106, 2012.

    Article  Google Scholar 

  40. Weizsäcker, H. W., and T. D. Kampp. Passive elastic properties of the rat aorta. Biomed. Eng. 35(10):224–234, 1990.

    Article  Google Scholar 

  41. Weizsacker, H. W., and J. G. Pinto. Isotropy and anisotropy of the arterial wall. J. Biomech. 21(6):477–487, 1988.

    Article  CAS  Google Scholar 

  42. Zou, Y., and Y. Zhang. An experimental and theoretical study on the anisotropy of elastin network. Ann. Biomed. Eng. 37(8):1572–1583, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Michael Moreno for providing the lab facilities to conduct the experiments. This research was funded by Texas A&M Engineering Experiment Section.

Conflict of Interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandler C. Benjamin.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myneni, M., Sridhar, R.L., Rajagopal, K.R. et al. Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta. Ann Biomed Eng 50, 452–466 (2022). https://doi.org/10.1007/s10439-022-02931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02931-2

Keywords

Navigation