Skip to main content
Log in

Treatment Planning for Atrial Fibrillation Using Patient-Specific Models Showing the Importance of Fibrillatory-Areas

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational models have made it possible to study the effect of fibrosis and scar on atrial fibrillation (AF) and plan future personalized treatments. Here, we study the effect of area available for fibrillatory waves to sustain AF. Then we use it to plan for AF ablation to improve procedural outcomes. CARPentry was used to create patient-specific models to determine the association between the size of residual contiguous areas available for AF wavefronts to propagate and sustain AF [fibrillatory area (FA)] after ablation with procedural outcomes. The FA was quantified in a novel manner accounting for gaps in ablation lines. We selected 30 persistent AF patients with known ablation outcomes. We divided the atrial surface into five areas based on ablation scar pattern and anatomical landmarks and calculated the FAs. We validated the models based on clinical outcomes and suggested future ablation lines that minimize the FAs and terminate rotor activities in simulations. We also simulated the effects of three common antiarrhythmic drugs. In the patient-specific models, the predicted arrhythmias matched the clinical outcomes in 25 of 30 patients (accuracy 83.33%). The average largest FA (FAmax) in the recurrence group was 8517 ± 1444 vs. 6772 ± 1531 mm2 in the no recurrence group (p < 0.004). The final FAs after adding the suggested ablation lines in the AF recurrence group reduced the average FAmax from 8517 ± 1444 to 6168 ± 1358 mm2 (p < 0.001) and stopped the sustained rotor activity. Simulations also correctly anticipated the effect of antiarrhythmic drugs in 5 out of 6 patients who used drug therapy post unsuccessful ablation (accuracy 83.33%). Sizes of FAs available for AF wavefronts to propagate are important determinants for ablation outcomes. FA size in combination with computational simulations can be used to direct ablation in persistent AF to minimize the critical mass required to sustain recurrent AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

LGE:

Late gadolinium enhancement

MRI:

Magnetic resonance imaging

FA:

Fibrillatory area

RF:

Radiofrequency

References

  1. Andrade, J., P. Khairy, D. Dobrev, and S. Nattel. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114:1453–1468, 2014.

    Article  CAS  Google Scholar 

  2. Boyle, P. M., T. Zghaib, S. Zahid, R. L. Ali, D. Deng, W. H. Franceschi, J. B. Hakim, M. J. Murphy, A. Prakosa, and S. L. Zimmerman. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 3:870–879, 2019.

    Article  Google Scholar 

  3. Calkins, H., J. Brugada, D. L. Packer, R. Cappato, S.-A. Chen, H. J. Crijns, R. J. Damiano Jr., D. W. Davies, D. E. Haines, and M. Haissaguerre. Hrs/ehra/ecas Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Personnel, Policy, Procedures and Follow-up: A report of the Heart Rhythm Society (hrs) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation developed in partnership with the European Heart Rhythm Association (ehra) and the European Cardiac Arrhythmia Society (ecas); in collaboration with the American College of Cardiology (acc), American Heart Association (aha), and the Society of Thoracic Surgeons (sts). Endorsed and Approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace. 9:335–379, 2007.

    Article  Google Scholar 

  4. Calkins, H., K. H. Kuck, R. Cappato, J. Brugada, A. J. Camm, S.-A. Chen, H. J. Crijns, R. J. Damiano Jr., D. W. Davies, and J. DiMarco. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation. Developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. Europace. 14:528–606, 2012.

    Article  Google Scholar 

  5. Chubb, H., R. Karim, S. Roujol, M. Nuñez-Garcia, S. E. Williams, J. Whitaker, J. Harrison, C. Butakoff, O. Camara, and A. Chiribiri. The reproducibility of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study. J. Cardiovasc. Magn. Reson. 20:21, 2018.

    Article  Google Scholar 

  6. Courtemanche, M., R. J. Ramirez, and S. Nattel. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol.-Heart Circ. Physiol. 275:H301–H321, 1998.

    Article  CAS  Google Scholar 

  7. Cox, J. L. Atrial fibrillation II: rationale for surgical treatment. J. Thorac. Cardiovasc. Surg. 126:1693–1699, 2003.

    Article  Google Scholar 

  8. Cox J. L., R. B. Schuessler and J. P. Boineau. The development of the Maze procedure for the treatment of atrial fibrillation. In: Seminars in Thoracic and Cardiovascular Surgery. Elsevier, 2000, pp. 2–14.

  9. Crumb, W. J., Jr., J. Vicente, L. Johannesen, and D. G. Strauss. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. J. Pharmacol. Toxicol. Methods. 81:251–262, 2016.

    Article  CAS  Google Scholar 

  10. Fink, T., M. Schlüter, C.-H. Heeger, C. Lemes, T. Maurer, B. Reissmann, J. Riedl, L. Rottner, F. Santoro, and B. Schmidt. Stand-alone pulmonary vein isolation versus pulmonary vein isolation with additional substrate modification as index ablation procedures in patients with persistent and long-standing persistent atrial fibrillation: the randomized Alster-Lost-AF Trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation). Circulation. 10:e005114, 2017.

    Google Scholar 

  11. Haissaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, and M.-Q. Picat. Driver domains in persistent atrial fibrillation. Circulation. 130:530–538, 2014.

    Article  Google Scholar 

  12. Haissaguerre, M., A. J. Shah, H. Cochet, M. Hocini, R. Dubois, I. Efimov, E. Vigmond, O. Bernus, and N. Trayanova. Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J. Physiol. 594:2387–2398, 2016.

    Article  CAS  Google Scholar 

  13. Jaïs, P., B. Cauchemez, L. Macle, E. Daoud, P. Khairy, R. Subbiah, M. Hocini, F. Extramiana, F. Sacher, and P. Bordachar. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation. 118:2498–2505, 2008.

    Article  Google Scholar 

  14. Kamali, R., J. Kump, E. Ghafoori, M. Lange, N. Hu, T. J. Bunch, D. J. Dosdall, R. S. Macleod, and R. Ranjan. Area available for atrial fibrillation to propagate is an important determinant of recurrence after ablation. JACC Clin. Electrophysiol. 7:896–908, 2021.

    Article  Google Scholar 

  15. Kamali, R., J. Schroeder, E. DiBella, B. Steinberg, F. Han, D. J. Dosdall, R. S. Macleod, and R. Ranjan. Reproducibility of clinical late gadolinium enhancement magnetic resonance imaging in detecting left atrial scar after atrial fibrillation ablation. J. Cardiovasc. Electrophysiol. 31:2824–2832, 2020.

    Article  Google Scholar 

  16. Kim, B.-S., Y.-H. Kim, G.-S. Hwang, H.-N. Pak, S. C. Lee, W. J. Shim, D. J. Oh, and Y. M. Ro. Action potential duration restitution kinetics in human atrial fibrillation. J. Am. Coll. Cardiol. 39:1329–1336, 2002.

    Article  Google Scholar 

  17. Knecht, S., M. Hocini, M. Wright, N. Lellouche, M. D. O’Neill, S. Matsuo, I. Nault, V. S. Chauhan, K. J. Makati, and M. Bevilacqua. Left atrial linear lesions are required for successful treatment of persistent atrial fibrillation. Eur. Heart J. 29:2359–2366, 2008.

    Article  Google Scholar 

  18. Krueger M. W., V. Schmidt, C. Tobón, F. M. Weber, C. Lorenz, D. U. Keller, H. Barschdorf, M. Burdumy, P. Neher and G. Plank. Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. In: International Conference on Functional Imaging and Modeling of the Heart. Springer, 2011, pp. 223–232.

  19. McGann, C., N. Akoum, A. Patel, E. Kholmovski, P. Revelo, K. Damal, B. Wilson, J. Cates, A. Harrison, and R. Ranjan. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circulation. 113:000689, 2013.

    Google Scholar 

  20. Oral, H., A. Chugh, E. Good, T. Crawford, J. F. Sarrazin, M. Kuhne, N. Chalfoun, D. Wells, W. Boonyapisit, and N. Gadeela. Randomized evaluation of right atrial ablation after left atrial ablation of complex fractionated atrial electrograms for long-lasting persistent atrial fibrillation. Circulation. 1:6–13, 2008.

    Google Scholar 

  21. Ouyang, F., S. Ernst, J. Chun, D. Bänsch, Y. Li, A. Schaumann, H. Mavrakis, X. Liu, F. T. Deger, and B. Schmidt. Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation. 112:3038–3048, 2005.

    Article  Google Scholar 

  22. Parmar, B. R., T. R. Jarrett, N. S. Burgon, E. G. Kholmovski, N. W. Akoum, N. Hu, R. S. Macleod, N. F. Marrouche, and R. Ranjan. Comparison of left atrial area marked ablated in electroanatomical maps with scar in MRI. J. Cardiovasc. Electrophysiol. 25:457–463, 2014.

    Article  Google Scholar 

  23. Perry D., A. Morris, N. Burgon, C. McGann, R. MacLeod and J. Cates. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation. In: Medical Imaging 2012: Computer-Aided DiagnosisInternational Society for Optics and Photonics, 2012, p. 83151D.

  24. Ramos-Mondragón, R., C. A. Galindo, and G. Avila. Role of TGF-β on cardiac structural and electrical remodeling. Vasc. Health Risk Manag. 4:1289, 2008.

    Article  Google Scholar 

  25. Romero, J., L. Di Biase, S. Mohanty, C. Trivedi, K. Patel, M. Parides, I. Alviz, J. C. Diaz, V. Natale, and J. Sanchez. Long-term outcomes of left atrial appendage electrical isolation in patients with nonparoxysmal atrial fibrillation: a propensity score-matched analysis. Circulation. 13:e008390, 2020.

    Google Scholar 

  26. Safavi-Naeini, P., and A. Rasekh. Left atrial appendage closure and pulmonary vein isolation. Texas Heart Inst. J. 47:60–62, 2020.

    Article  Google Scholar 

  27. Schaff H. V., J. A. Dearani, R. G. Daly, T. A. Orszulak and G. K. Danielson. Cox-Maze procedure for atrial fibrillation: Mayo Clinic experience. In: Seminars in Thoracic and Cardiovascular Surgery. Elsevier, 2000, p. 30–37.

  28. Scherr, D., P. Khairy, S. Miyazaki, V. Aurillac-Lavignolle, P. Pascale, S. B. Wilton, K. Ramoul, Y. Komatsu, L. Roten, and A. Jadidi. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circulation. 8:18–24, 2015.

    CAS  Google Scholar 

  29. Tilz R. R., B. Schmidt, S. D. Menon, K. Chun, A. Fuernkranz, A. Metzner, B. Koektuerk, M. Konstantinidou, T. Zerm and R. Malesius. Left atrial appendage function and clinical outcome after electrical isolation of left atrial appendage in patients undergoing atrial fibrillation ablation. Am. Heart Assoc., 2008.

  30. Verma, A., C.-Y. Jiang, T. R. Betts, J. Chen, I. Deisenhofer, R. Mantovan, L. Macle, C. A. Morillo, W. Haverkamp, and R. Weerasooriya. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl. J. Med. 372:1812–1822, 2015.

    Article  Google Scholar 

  31. Vigmond, E., R. W. dos Santos, A. J. Prassl, M. Deo, G. Plank, and S. Bauer. Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96:3–18, 2007.

    Article  Google Scholar 

  32. Vigmond, E. J., M. Hughes, G. Plank, and L. J. Leon. Computational tools for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36:69–74, 2003.

    Article  Google Scholar 

  33. Wazni, O. M., N. F. Marrouche, D. O. Martin, A. Verma, M. Bhargava, W. Saliba, D. Bash, R. Schweikert, J. Brachmann, and J. Gunther. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. Jama. 293:2634–2640, 2005.

    Article  CAS  Google Scholar 

  34. Weimar, T., S. Schena, M. S. Bailey, H. S. Maniar, R. B. Schuessler, J. L. Cox, and R. J. Damiano Jr. The cox-maze procedure for lone atrial fibrillation: a single-center experience over 2 decades. Circulation. 5:8–14, 2012.

    Google Scholar 

  35. Williams, E. V. Classification of antidysrhythmic drugs. Pharmacol. Therap. 1:115–138, 1975.

    CAS  Google Scholar 

  36. Yamashita, K., R. Kamali, E. Kwan, R. S. MacLeod, D. J. Dosdall, and R. Ranjan. Effective ablation settings that predict chronic scar after left atrial ablation. JACC. 6:143–152, 2020.

    Google Scholar 

  37. Yorgun, H., U. Canpolat, M. Okşul, Y. Z. Şener, A. H. Ateş, H. J. Crijns, and K. Aytemir. Long-term outcomes of cryoballoon-based left atrial appendage isolation in addition to pulmonary vein isolation in persistent atrial fibrillation. EP Europace. 21:1653–1662, 2019.

    Article  Google Scholar 

  38. Zahid, S., H. Cochet, P. M. Boyle, E. L. Schwarz, K. N. Whyte, E. J. Vigmond, R. Dubois, M. Hocini, M. Haïssaguerre, and P. Jaïs. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc. Res. 110:443–454, 2016.

    Article  CAS  Google Scholar 

Download references

Funding

RR is or reently has been a consultant to Abbott, Biosense Webster and Medtronic. The University of Utah has research grants from Biosense Webster and Abbott with RR as the PI. JB has research grants from Boehringer Ingelheim, Boston Scientific, Altathera. The remaining authors have nothing to disclose. RR is currently supported by NHLBI R01 HL142913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ranjan.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Supplementary file2 (AVI 3030 kb)

Supplementary file3 (AVI 3149 kb)

Supplementary file4 (AVI 3957 kb)

Supplementary file5 (AVI 3768 kb)

Supplementary file6 (AVI 895 kb)

Supplementary file7 (AVI 846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, R., Gillete, K., Tate, J. et al. Treatment Planning for Atrial Fibrillation Using Patient-Specific Models Showing the Importance of Fibrillatory-Areas. Ann Biomed Eng 51, 329–342 (2023). https://doi.org/10.1007/s10439-022-03029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03029-5

Keywords

Navigation