Skip to main content

Advertisement

Log in

Effect of Pyrolysis Temperature on the Behaviour of Environmentally Friendly Hybrid Basalt Fibre Reinforced Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Polysiloxane thermosets are among the most important materials prepared via sol–gel chemistry. In this work, selected solvent-free polysiloxane resins were investigated in terms of their application potential as environmentally friendly precursors of partially pyrolyzed composites with a hybrid polysiloxane/SiOC matrix reinforced with basalt fibres. Based on previous research, the solvent-free SiH/vinyl-functional resin was selected as a promising composite matrix precursor. In this work, the influence of pyrolysis temperature on the behaviour of new 1D hybrid composite materials was investigated. The microstructure of the composite and fibre-matrix bonding vary on their final pyrolysis temperature, which ranged from 420 °C to 750 °C. Similarly, a set of composites was prepared by the same technology using a conventional methylsiloxane resin containing 50% of solvent for comparison. Dimensional and mass changes were investigated during the pyrolysis process. The effect of microstructure development on the mechanical properties of the matrix and composite reinforced with the basalt fibres was determined. Maximum mechanical resistance was obtained for the composite pyrolyzed at 600 °C. The flexural strength of this hybrid composite reached the level of 650 MPa. The selected solvent-free SiH/vinyl-functional methyl-phenyl-siloxane resin was shown to give the prepared composites a high-temperature resistance above 600 °C. No significant difference in comparison with conventional precursor was observed during heat resistance experiments. The newly developed hybrid composite is, therefore, an environmentally friendly alternative for heat and fire-resistant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bai, J.: Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Elsevier Science, Amsterdam (2013)

    Book  Google Scholar 

  2. Bhat, T., Chevali, V., Liu, X., Feih, S., Mouritz, A.P.: Fire structural resistance of basalt fibre composite. Compos. Pt. A. Appl. Sci. Manuf. 71, 107–115 (2015)

    Article  CAS  Google Scholar 

  3. Bhat, T., Kandare, E., Gibson, A.G., Di Modica, P., Mouritz, A.P.: Compressive softening and failure of basalt fibre composites in fire: Modelling and experimentation. Compos. Struct. 165, 15–24 (2017)

    Article  Google Scholar 

  4. Welter, M., Schmücker, M., MacKenzie, K.J.D.: Evolution of the fibre-matrix interactions in basalt-fibre-reinforced geopolymer-matrix composites after heating. J. Ceram. Sci. Technol. 6, 17–24 (2015)

    Google Scholar 

  5. Weichand, P., Gadow, R.: Basalt fibre reinforced SiOC-matrix composites: Manufacturing technologies and characterisation. J. Eur. Ceram. Soc. 35, 4025–4030 (2015)

    Article  CAS  Google Scholar 

  6. Chlup, Z., Černý, M., Strachota, A., Sucharda, Z., Halasová, M., Dlouhý, I.: Influence of pyrolysis temperature on fracture response in SiOC based composites reinforced by basalt woven fabric. J. Eur. Ceram. Soc. 34, 3389–3398 (2014)

    Article  CAS  Google Scholar 

  7. Černý, M., Glogar, P., Goliáš, V., Hruška, J., Jakeš, P., Sucharda, Z., Vávrová, I.: Comparison of mechanical properties and structural changes of continuous basalt and glass fibres at elevated temperatures. Ceram Silik. 51, 82–88 (2007)

    Google Scholar 

  8. Glogar, P., Sucharda, Z., Cerny, M., Puchegger, S., Peterlik, H.: Microstructure and mechanical properties of heat resistant composites reinforced with basalt fibres. Ceram Silik. 51, 190 (2007)

    CAS  Google Scholar 

  9. Halasova, M., Chlup, Z., Strachota, A., Cerny, M., Dlouhy, I.: Mechanical response of novel SiOC glasses to high temperature exposition. J. Eur. Ceram. Soc. 32, 4489–4495 (2012)

    Article  CAS  Google Scholar 

  10. Strachota, A., Cerny, M., Chlup, Z., Slouf, M., Hromadkova, J., Plestil, J., Sandova, H., Glogar, P., Sucharda, Z., Havelcova, M., Schweigstillova, J., Dlouhy, I., Kozak, V.: Optimization of sol-gel/pyrolysis routes to silicon oxycarbide glasses. J. Non. Cryst. Solids. 358, 2771–2782 (2012)

    Article  CAS  Google Scholar 

  11. Brus, J., Kolář, F., Machovič, V., Svı́tilová, J.: Structure of silicon oxycarbide glasses derived from poly(methylsiloxane) and poly[methyl(phenyl)siloxane] precursors. J. Non. Cryst. Solids. 289, 62–74 (2001)

  12. Havelcová, M., Strachota, A., Černý, M., Sucharda, Z., Šlouf, M.: Effect of the dimethylsilyloxy co-monomer “D” on the chemistry of polysiloxane pyrolysis to SiOC. J. Anal. Appl. Pyrolysis. 117, 30–45 (2016)

    Article  Google Scholar 

  13. Strachota, A., Cerny, M., Chlup, Z., Slouf, M., Brus, J., Plestil, J., Sucharda, Z., Havelcova, M., Halasova, M.: Preparation of silicon oxynitrocarbide (SiONC) and of its ceramic-fibre-composites via hydrosilylation/radical polymerization/pyrolysis. J. Non. Cryst. Solids. 423, 9–17 (2015)

    Article  Google Scholar 

  14. Černý, M., Chlup, Z., Strachota, A., Schweigstillová, J., Svítilová, J., Halasová, M.: Rheological behaviour and thermal dilation effects of alumino-silicate adhesives intended for joining of high-temperature resistant sandwich structures. J. Eur. Ceram. Soc. 37, 2209–2218 (2017)

    Article  Google Scholar 

  15. Cerny, M., Strachota, A., Chlup, Z., Sucharda, Z., Zaloudkova, M., Glogar, P., Kubena, I.: Strength elasticity and failure of composites with pyrolyzed matrices based on polymethylsiloxane resins with optimized ratio of D and T components. J. Compos. Mater. 47, 1055–1066 (2013)

    Article  Google Scholar 

  16. Cerny, M., Chlup, Z., Strachota, A., Halasova, M., Schweigstillova, J., Kacha, P., Svitilova, J.: Potential of glass basalt or carbon fibres for reinforcement of partially pyrolysed composites with improved temperature and fire resistance. Ceram. Silik. 64, 115–124 (2020)

    Google Scholar 

  17. Fiore, V., Scalici, T., Di Bella, G., Valenza, A.: A review on basalt fibre and its composites. Compos. Pt. B. Eng. 74, 74–94 (2015)

    Article  CAS  Google Scholar 

  18. Vikas, G., Sudheer, M.: A Review on Properties of Basalt Fiber Reinforced Polymer Composites. Am. J. Mater. Sci. 7, 156–165 (2017)

    Google Scholar 

  19. Colombo, C., Vergani, L., Burman, M.: Static and fatigue characterisation of new basalt fibre reinforced composites. Compos. Struct. 94, 1165–1174 (2012)

    Article  Google Scholar 

  20. Pang, Y., Zhong, Z.L., Liu, H.W., Rao, L.K.: Research on Fire-Resistant Fabric Properties of Basalt Fiber. Appl. Mech. Mater. 217, 1151–1154 (2012)

    Article  Google Scholar 

  21. Sarasini, F., Tirillò, J., Seghini, M.C.: Influence of thermal conditioning on tensile behaviour of single basalt fibres. Compos. Pt. B. Eng. 132, 77–86 (2018)

    Article  CAS  Google Scholar 

  22. Militký, J., Kovařiř, V.: Ultimate Mechanical Properties of Thermally Exposed Basalt Filament Yarns. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354, 55–62 (2000)

    Article  Google Scholar 

  23. Mingazzini, C., Scafè, M., Caretti, D., Nanni, D., Burresi, E., Brentari, A.: Poly-Siloxane Impregnation and Pyrolysis of Basalt Fibers for the Cost-Effective Production of CFCCs, pp. 139–144. Trans Tech Publications, Switzerland (2014)

    Google Scholar 

  24. Černý, M., Sucharda, Z., Strachota, A., Chlup, Z., Glogar, P.: Influence of the organic/inorganic pyrolysis conversion level on mechanical properties of composites with E-glass or basalt fibre reinforcement. Ceram. Silik. 54, 345–351 (2010)

    Google Scholar 

  25. Chlup, Z., Cerny, M., Strachota, A., Hadraba, H., Kacha, P., Halasova, M.: Effect of the exposition temperature on the behaviour of partially pyrolysed hybrid basalt fibre composites. Compos. Pt. B. Eng. 147, 122–127 (2018)

    Article  CAS  Google Scholar 

  26. Halasova, M., Kubena, I., Roupcova, P., Cerny, M., Strachota, A., Chlup, Z.: Iron precipitation in basalt fibres embedded in partially pyrolysed methylsiloxane matrix. Compos. Pt. A. Appl. Sci. Manuf. 123, 286–292 (2019)

    Article  CAS  Google Scholar 

  27. Dewar, Z.E., Christiansen, G.: Contact chemical burn of the hand caused by xylene: A case report. J. Am. Coll. Emerg. Physicians. Open. 1, 289–291 (2020)

    Article  Google Scholar 

  28. Gadow, R., Weichand, P., Jiménez, M.: Process Technology, Applications and Thermal Resistivity of Basalt Fiber Reinforced SiOC Composites. Ceramics. 2, 298–307 (2019)

    Article  CAS  Google Scholar 

  29. Černý, M., Chlup, Z., Strachota, A., Brus, J., Schweigstillová, J., Rýglová, Š, Bičáková, O.: In-situ measurement of mechanical properties and dimensional changes of preceramic thermosets during their pyrolysis conversion to ceramics using thermomechanical analysis. Ceram. Int. 47, 23285–23294 (2021)

    Article  Google Scholar 

  30. Cerny, M., Glogar, P., Sucharda, Z., Chlup, Z., Kotek, J.: Partially pyrolyzed composites with basalt fibres - Mechanical properties at laboratory and elevated temperatures. Compos. Pt. A. Appl. Sci. Manuf. 40, 1650–1659 (2009)

    Article  Google Scholar 

  31. Kamenny vek: Basalt roving - production, types, characteristics. https://basfiber.com/products/roving (2020)

  32. Bluhm, J.I.: Slice synthesis of a three dimensional “work of fracture” specimen. Eng. Fract. Mech. 7, 593–604 (1975)

    Article  Google Scholar 

  33. Quinn, G.D., Bradt, R.C.: On the Vickers Indentation Fracture Toughness Test. J. Am. Ceram. Soc. 90, 673–680 (2007)

    Article  CAS  Google Scholar 

  34. Rouxel, T.: Driving force for indentation cracking in glass: composition, pressure and temperature dependence. Philos. Trans. Royal. Soc. A. Math. Phys. Eng. Sci. 373, 20140140 (2015)

    Article  Google Scholar 

  35. To, T., Stabler, C., Ionescu, E., Riedel, R., Célarié, F., Rouxel, T.: Elastic properties and fracture toughness of SiOC-based glass-ceramic nanocomposites. J. Am. Ceram. Soc. 103, 491–499 (2020)

    Article  CAS  Google Scholar 

  36. Makhova, M.F.: Crystallization of basalt fibers. Glass. Ceram. 25, 672–674 (1968)

    Article  Google Scholar 

  37. Cerny, M., Halasova, M., Schweigstillova, J., Chlup, Z., Sucharda, Z., Glogar, P., Svitilova, J., Strachota, A., Ryglova, S.: Mechanical properties of partially pyrolysed composites with plain weave basalt fibre reinforcement. Ceram. Int. 40, 7507–7521 (2014)

    Article  CAS  Google Scholar 

  38. Wei, B., Cao, H., Song, S.: Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corros. Sci. 53, 426–431 (2011)

    Article  CAS  Google Scholar 

  39. Amuthakkannan, P., Manikandan, V., Jappes, J.T.W., Uthayakumar, M.: Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Mater. Phys. Mech. 16, 107–117 (2013)

    CAS  Google Scholar 

  40. Lopresto, V., Leone, C., De Iorio, I.: Mechanical characterisation of basalt fibre reinforced plastic. Compos. Pt. B. Eng. 42, 717–723 (2011)

    Article  Google Scholar 

  41. Davies, P., Verbouwe, W.: Evaluation of Basalt Fibre Composites for Marine Applications. Appl. Compos. Mater. 25, 299–308 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation under the project GAP 17-12546S and by the Operational Program Integrated Infrastructure 2014–2020 of the project: Innovative Solutions for Propulsion, Power and Safety Components of Transport Vehicles, code ITMS 313011V334, co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Chlup.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chlup, Z., Černý, M., Strachota, A. et al. Effect of Pyrolysis Temperature on the Behaviour of Environmentally Friendly Hybrid Basalt Fibre Reinforced Composites. Appl Compos Mater 29, 829–843 (2022). https://doi.org/10.1007/s10443-021-09990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09990-z

Keywords

Navigation