Skip to main content

Advertisement

Log in

Comparison of Tensile Properties of Carbon Fiber, Basalt Fiber and Hybrid Fiber Reinforced Composites Under Various Strain Rates

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Carbon fiber reinforced epoxy (CFRE) and basalt fiber reinforced epoxy (BFRE) are used widely in automotive, navy due to their excellent mechanical performance. In this study, the effects of strain rate sensitivity of CFRE, BFRE and their mixtures were studied. Five strain rate (quasi-static: 0.0017 s−1, dynamic state: 0.1 s−1, 10 s−1, 100 s−1, 150 s−1) were applied. The cross-section of the fractured specimens was analyzed. Results showed that the hybrid composites all exhibited stacking sequence sensitivity. In the quasi-static state, the peak forces of two hybrid structures were between that of BFRE and CFRE, in which H1 and H2 are improved by 3 MPa and 29 MPa, compared to BFRE, respectively. While in the dynamic state, the mechanical properties of three hybrid structures were all worse than those of BFRE and CFRE. The hybrid composites were also sensitive to strain rates. When the loading speed increased from quasi-static to dynamic state, the peak forces of five structures all increased a lot. However, the three structures (BFRE, H1, H2) exhibited strain rate sensitivity, when the stretch speed increased in the dynamic range. The five structures all showed stratification after stretching. Compared with the cross-section after quasi-static stretching, the cross-section after dynamic stretching had fewer microcracks. The tight combination of fibers and resin could explain the sequence sensitivity of three hybrid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Material

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Code Availability

Not applicable.

References

  1. Qian, W.M., Mohammad, H.V., Sun, Y.L., Ali, H., Reza, B., Saeed, S., Amirsalar, K., Davood, T.: Investigation on the effect of functionalization of single-walled carbon nanotubes on the mechanical properties of epoxy glass composites: Experimental and molecular dynamics simulation. J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2021.03.104

    Article  Google Scholar 

  2. Alcudia-Zacarías, E., Abúndez-Pliego, A., Mayén, J., Colín-Ocampo, J., Blanco-Ortega, A., Alcocer-Rosado, W.M.: Experimental Assessment of Residual Integrity and Balanced Mechanical Properties of GFRP/CFRP Hybrid Laminates under Tensile and Flexural Conditions. Appl. Compos. Mater. (2020). https://doi.org/10.1007/s10443-020-09839-x

    Article  Google Scholar 

  3. Xu, L., Ding, J., Wang, Y., Xie, Y., Wu, X., Ma, Z.: Thermal Stability Analysis and Experimental Study of a New Type of Grid-Reinforced Carbon Fiber Mirror. Appl. Compos. Mater. (2019). https://doi.org/10.1007/s10443-018-9705-1

    Article  Google Scholar 

  4. Wang, S., Xu, L., Sun, T., Li, G., Cui, J.: Effects of process parameters on mechanical performance and interfacial morphology of electromagnetic pulse welded joints between aluminum and galvanized steel. J. Mater. Res. Technol. (2021). https://doi.org/10.1016/j.jmrt.2020.12.047

    Article  Google Scholar 

  5. Zhou, J., Li, Y., Cheng, L., Zhang, L.: Indirect Microwave Curing Process Design for Manufacturing Thick Multidirectional Carbon Fiber Reinforced Thermoset Composite Materials. Appl. Compos. Mater. (2019). https://doi.org/10.1007/s10443-018-9724-y

    Article  Google Scholar 

  6. Jiang, H., Zeng, C., Li, G., Cui, J.: Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.113162

    Article  Google Scholar 

  7. Yang, B., Fu, K., Lee, J., Li, Y.: Artificial Neural Network (ANN)-Based Residual Strength Prediction of Carbon Fibre Reinforced Composites (CFRCs) After Impact. Appl. Compos. Mater. (2021). https://doi.org/10.1007/s10443-021-09891-1

    Article  Google Scholar 

  8. Wang, S., Liang, W., Duan, L., Li, G., Cui, J.: Effects of loading rates on mechanical property and failure behavior of single-lap adhesive joints with carbon fiber reinforced plastics and aluminum alloys. Int. J. Adv. Manuf. Tech. (2020). https://doi.org/10.1007/s00170-019-04804-w

    Article  Google Scholar 

  9. Jesthi, D.K., Nayak, R.K.: Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application. Compos. Part B-Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.03.042

    Article  Google Scholar 

  10. Liu, F., Xu, J.: Nonlinear dynamic characteristics of High-entropy alloy-carbon fiber composite laminate subjected to stochastic excitation. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.130888

    Article  Google Scholar 

  11. He, B., Wang, B., Wang, Z., Qi, S., Tian, G., Wu, D.: Mechanical properties of hybrid composites reinforced by carbon fiber and high-strength and high-modulus polyimide fiber. Polymer (2020). https://doi.org/10.1016/j.polymer.2020.122830

    Article  Google Scholar 

  12. Monfared, R.M., Ayatollahi, M.R., Isfahani, R.B.: Synergistic effects of hybrid MWCNT/nanosilica on the tensile and tribological properties of woven carbon fabric epoxy composites. Theor. Appl. Fract. Mec. (2018). https://doi.org/10.1016/j.tafmec.2018.05.007

    Article  Google Scholar 

  13. Ayatollahi, M.R., Isfahani, R.B., Monfared, R.M.: Effects of multi-walled carbon nanotube and nanosilica on tensile properties of woven carbon fabric-reinforced epoxy composites fabricated using VARIM. J. Compos. Mater. (2017). https://doi.org/10.1177/0021998317699982

    Article  Google Scholar 

  14. Pandya, K.S., Veerraju, C., Naik, N.K.: Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Mater. Design (2011). https://doi.org/10.1016/j.matdes.2011.03.003

    Article  Google Scholar 

  15. Safri, S.N.A., Sultan, M.T.H., Jawaid, M., Jayakrishna, K.: Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B-Eng. (2018). https://doi.org/10.1016/j.compositesb.2017.09.008

    Article  Google Scholar 

  16. De Rosa, I.M., Marra, F., Pulci, G., Santulli, C., Sarasini, F., Tirillò, J., Valente, M.: Post-Impact Mechanical Characterisation of Glass and Basalt Woven Fabric Laminates. Appl. Compos. (2012). https://doi.org/10.1007/s10443-011-9209-8

  17. Nisini, E., Santulli, C., Liverani, A.: Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos. Part B-Eng. (2017). https://doi.org/10.1016/j.compositesb.2016.06.071

    Article  Google Scholar 

  18. Ary Subagia, I.D.G., Kim, Y., Tijing, L.D., Kim, C.S., Shon, H.K.: Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Compos Part B-Eng (2013). https://doi.org/10.1016/j.compositesb.2013.10.027

  19. Wang, S., Yao, Y., Tang, C., Li, G., Cui, J.: Mechanical characteristics, constitutive models and fracture behaviors of short basalt fiber reinforced thermoplastic composites under varying strain rates. Compos. Part B-Eng. (2021). https://doi.org/10.1016/j.compositesb.2021.108933

    Article  Google Scholar 

  20. Wang, S., Zhong, J., Gu, Y., Li, G., Cui, J.: Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polym. Compos. (2020). https://doi.org/10.1002/pc.25702

    Article  Google Scholar 

  21. Wang, S., Wang, S., Li, G., Cui, J.: Dynamic response and fracture analysis of basalt fiber reinforced plastics and aluminum alloys adhesive joints. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114013

    Article  Google Scholar 

  22. Elmahdy, A., Verleysen, P.: Tensile behavior of woven basalt fiber reinforced composites at high strain rates. Polym. Test. (2019). https://doi.org/10.1016/j.polymertesting.2019.03.016

    Article  Google Scholar 

  23. Wang, M., Zhang, Z., Li, Y., Li, M., Sun, Z.: Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites. J. Reinf. Plast. Comp. (2008). https://doi.org/10.1177/0731684407084119

    Article  Google Scholar 

  24. Zhang, X., Shi, Y., Li, Z.: Experimental study on the tensile behavior of unidirectional and plain weave CFRP laminates under different strain rates. Compos. Part B-Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.01.067

    Article  Google Scholar 

  25. Xia, Y. Wang, Y. Zhou, Jeelani, S.: Effect of strain rate on tensile behavior of carbon fiber reinforced aluminum laminates. Mater. Lett. (2007). https://doi.org/10.1016/j.matlet.2006.04.043

  26. Zhou, Y., Wang, Y., Xia, Y., Jeelani, S.: Tensile behavior of carbon fiber bundles at different strain rates. Mater. Lett. (2010). https://doi.org/10.1016/j.matlet.2009.10.045

    Article  Google Scholar 

  27. Dong, L., Harding, J.: A single-lap shear specimen for determining the effect of strain rate on the interlaminar shear strength of carbon fibre-reinforced laminates. Compos. Part A-Appl. S. (1994). https://doi.org/10.1016/0010-4361(94)90006-X

    Article  Google Scholar 

  28. Hou, J.P., Ruiz, C.: Measurement of the properties of woven CFRP T300/914 at different strain rates. Compos. Sci. Technol. (2000). https://doi.org/10.1016/S0266-3538(00)00151-2

    Article  Google Scholar 

  29. Zhang, H., Yao, Y., Zhu, D., Mobasher, B., Huang, L.: Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures. Polym. Test. (2016). https://doi.org/10.1016/j.polymertesting.2016.02.006

    Article  Google Scholar 

  30. Chen, W., Hao, H., Jong, M., Cui, J., Shi, Y., Chen, L.: Quasi-static and dynamic tensile properties of basalt fiber reinforced polymer. Compos. Part B-Eng. (2017). https://doi.org/10.1016/j.compositesb.2017.05.069

    Article  Google Scholar 

  31. Tirillò, J., Ferrante, L., Sarasini, F., Lampani, L., Barbero, E., Sánchez-Sáez, S., Valente, T., Gaudenzi, P.: High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Compos. Struct. (2017). https://doi.org/10.1016/j.compstruct.2017.02.039

    Article  Google Scholar 

  32. Chafiq, J., Oucht, I., Fqih, M.A.E.: Investigations of tensile behavior of basalt/glass/carbon/hybrid fiber composite. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.10.142

    Article  Google Scholar 

  33. Chen, D., Sun, G., Meng, M., Jin, X., Li, Q.: Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates. Thin Wall Struct. (2019). https://doi.org/10.1016/j.tws.2019.03.056

    Article  Google Scholar 

  34. Shishevan, F.A., Akbulut, H.: Low-Velocity Impact Behavior of Carbon/Basalt Fiber-Reinforced Intra-ply Hybrid Composites. Iran. J. Sci. Technol. Trans. Mech. Eng. (2019). https://doi.org/10.1007/s40997-018-0151-3

    Article  Google Scholar 

  35. Sun, G., Tong, S., Chen, D., Gong, Z., Li, Q.: Mechanical properties of hybrid composites reinforced by carbon and basalt fibers. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2018.08.007

    Article  Google Scholar 

  36. Czél, G., Wisnom, M.R.: Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Compos. Part A-Appl. S. (2013). https://doi.org/10.1016/j.compositesa.2013.04.006

    Article  Google Scholar 

  37. Ramakrishnan, G., Ramnath, B.V., Elanchezhian, C., Kumar, A.A., Gowtham, S.: Investigation of Mechanical Behaviour of Basalt-Banana Hybrid Composites. Silicon-Neth. (2019). https://doi.org/10.1007/s12633-018-0009-8

    Article  Google Scholar 

  38. Muralidhara, B., Kumaresh Babu, S.P., Suresha, B.: Utilizing vacuum bagging process to prepare carbon fiber/epoxy composites with improved mechanical properties. Mater. Today (2019). https://doi.org/10.1016/j.matpr.2019.09.051

    Article  Google Scholar 

  39. Ou, Y., Zhu, D.: Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures. Constr. Build Mater. (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.044

    Article  Google Scholar 

  40. Zhang, J., Chaisombat, K., He, S., Wang, C.H.: Hybrid composite laminates reinforced with glass/carbon woven fabricsfor lightweight load bearing structures. Mater. Design (2012). https://doi.org/10.1016/j.matdes.2011.11.006

    Article  Google Scholar 

  41. Zhu, L., Sun, B., Hu, H., Gu, B.: Constitutive equations of basalt filament tows under quasi-static and high strain rate tension. Mat. Sci. Eng. A-Struct.(2010). https://doi.org/10.1016/j.msea.2010.02.015

    Article  Google Scholar 

  42. Orton, S.L., Chiarit, V.P., Rabalais, C., Wombacher, M., Rowell, S.P.: Strain Rate Effects in CFRP Used For Blast Mitigation. Polymers-Basel (2014). https://doi.org/10.3390/polym6041026

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (No. 51975202 and 52175315), the Natural Science Foundation of Hunan Province (2019JJ30005) and the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body No. 31915010.

Funding

This project is supported by National Natural Science Foundation of China (No. 51975202 and 52175315), the Natural Science Foundation of Hunan Province (2019JJ30005) and the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body No. 31915010.

Author information

Authors and Affiliations

Authors

Contributions

Yuanheng Yao: Methodology, Investigation, Experiment, Writing, Revision. Junjia Cui: Methodology, Investigation, Formal analysis, Funding acquisition. Shaoluo Wang: Experiment, Investigation, Formal analysis. Liwang Xu: Experiment, Writing. Guangyao Li: Formal analysis, Funding acquisition. Hao Pan: Formal analysis, Funding acquisition. Xinna Bai: Visualization, Formal analysis, Revision, Funding acquisition.

Corresponding author

Correspondence to Xinna Bai.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare that they have no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Cui, J., Wang, S. et al. Comparison of Tensile Properties of Carbon Fiber, Basalt Fiber and Hybrid Fiber Reinforced Composites Under Various Strain Rates. Appl Compos Mater 29, 1147–1165 (2022). https://doi.org/10.1007/s10443-022-10012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10012-9

Keywords

Navigation