Skip to main content

Advertisement

Log in

Hydrogen adsorption in transition metal carbon nano-structures

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, S.M., Berry, G.D., Martinez-Frias, J., Espinosa-Loza, F.: Vehicular storage of hydrogen in insulated pressure vessels. Int. J. Hydrog. Energy 31, 2274–2283 (2006)

    Article  CAS  Google Scholar 

  • Baker, R.T.K., Barber, M.A., Waite, R.J., Harris, P.S., Feates, F.S.: Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972)

    Article  CAS  Google Scholar 

  • Bobet, J.L., Grigorova, E., Khrussanova, M., Khristov, M., Stefanov, P., Peshev, P., Radev, D.: Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling. J. Alloys Comp. 366, 298–302 (2004)

    Article  CAS  Google Scholar 

  • Chen, L., Singh, R.K., Webley, P.: Synthesis, characterization and hydrogen storage properties of microporous carbons templated by cation exchanged forms of zeolite Y with propylene and butylene as carbon precursors. Microporous Mesoporous Mat. 102, 159–170 (2007)

    Article  CAS  Google Scholar 

  • Ciambelli, P., Sannino, D., Sarno, M., Fonseca, A., Nagy, J.B.: Selective formation of carbon nanotubes over co-modified beta zeolite by CCVD. Carbon 43, 631–640 (2005)

    Article  CAS  Google Scholar 

  • Cooper, A., Charls, G., Pez, P.: Hydrogen storage using carbon-metal hybrid compositions. US Patent 6,596,055 (2003)

  • de la Casa-Lillo, M.A.F., Cazorla-Amoros, L.-D., Linares-Solano, A.: Hydrogen storage in activated carbons and activated carbon fibers. J. Phys. Chem. B 106, 10930–10934 (2002)

    Article  CAS  Google Scholar 

  • Fichtner, M.: Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mat. 7, 443–455 (2005)

    Article  CAS  Google Scholar 

  • Hirscher, M., Becher, M., Haluska, M., Quintel, A., Skakalova, V., Choi, Y.-M., Dettlaff-Weglikowska, U., Roth, S., Stepanek, I., Bernier, P., Leonhardt, A., Fink, J.: Hydrogen storage in carbon nanostructures. J. Alloys Comp. 330, 654–658 (2002)

    Article  Google Scholar 

  • Hou, Y., Kondoh, H., Ohta, T., Gao, S.: Size-controlled synthesis of nickel nanoparticles. Appl. Surf. Sci. 241, 218–222 (2005a)

    Article  CAS  Google Scholar 

  • Hou, P.X., Yamazaki, T., Orikasa, H., Kyotani, T.: An easy method for the synthesis of ordered microporous carbons by the template technique. Carbon 43, 2624–2627 (2005b)

    Article  CAS  Google Scholar 

  • Jagiello, J., Anson, A., Martinez, M.T.: DFT-based prediction of high-pressure H-2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K. J. Phys. Chem. B 110, 4531–4534 (2006)

    Article  CAS  Google Scholar 

  • Jiang, Y.X., Sun, S.G., Ding, N.: Novel phenomenon of enhancement of IR absorption of CO adsorbed on nanoparticles of Pd confined in supercages of Y-zeolite. Chem. Phys. Lett. 344, 463–470 (2001)

    Article  CAS  Google Scholar 

  • Jorda-Beneyto, M., Suarez-Garcia, F., Lozano-Castello, D., Cazorla-Amoros, D., Linares-Solano, A.: Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45, 293–303 (2007)

    Article  CAS  Google Scholar 

  • Joo, S.H., Ryoo, R., Kruk, M., Jaroniec, M.: Thermally induced structural changes in SBA-15 and MSU-H silicas and their implications for synthesis of ordered mesoporous carbons. Stud. Surf. Sci. Catal. 146, 49–52 (2003)

    Article  CAS  Google Scholar 

  • Keane, M.A.: Role of the alkali metal co-cation in the ion exchange of Y zeolites I. Alkali metal and nickle ion-exchange equilibria. Microporous Mat. 3, 93–108 (1994)

    Article  CAS  Google Scholar 

  • Keane, M.A.: Role of the alkali metal co-cation in the ion exchange of Y zeolites II. Copper ion-exchange equiliria. Microporous Mat. 4, 385–394 (1995)

    Article  Google Scholar 

  • Keaton, R.J., Blacqulere, J.M., Baker, R.T.: Base metal catalyzed behydrogenation of ammonia-borane for chemical hydrogen storage. J. Am. Chem. Soc. 129, 1844–1845 (2007)

    Article  CAS  Google Scholar 

  • Kyotani, T.: Control of pore structure in carbon. Carbon 38, 269–286 (2000)

    Article  CAS  Google Scholar 

  • Kyotani, T., Nagai, T., Inoue, S., Tomita, A.: Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem. Mat. 9, 609–615 (1997)

    Article  CAS  Google Scholar 

  • Li, Y.W., Yang, R.T.: Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006)

    Article  CAS  Google Scholar 

  • Lueking, A., Yang, R.T.: Hydrogen storage in carbon nanotubes: Residual metal content and pretreatment temperature. Aiche J. 49, 1556–1568 (2003)

    Article  CAS  Google Scholar 

  • Nijkamp, M.G., Raaymakers, J., van Dillen, A.J., de Jong, K.P.: Hydrogen storage using physisorption—materials demands. Appl. Phys. Mat. Sci. Proces. 72, 619–623 (2001)

    CAS  Google Scholar 

  • Ma, Z.X., Kyotani, T., Tomita, A.: Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite. Phys. Chem. Chem. Phys. 2, 2365–2366 (2000)

    Google Scholar 

  • Ma, Z.X., Kyotani, T., Liu, Z., Terasaki, O., Tomita, A.: Very high surface area microporous carbon with a three-dimensional nano-array structure: Synthesis and its molecular structure. Chem. Mater. 13, 4413–4415 (2001)

    Article  CAS  Google Scholar 

  • Ma, Z., Takashi, K., Tomita, A.: Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y. Carbon 2367–2374 (2002)

  • Matsui, T., Harada, M., Ichihashi, Y., Bando, K.K., Matsubayashi, N., Toba, M., Yoshimura, Y.: Effect of noble metal particle size on the sulfur tolerance of monometallic Pd and Pt catalysts supported on high-silica USY zeolite. Appl. Catal. A Gen. 286, 249–257 (2005)

    Article  CAS  Google Scholar 

  • Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M.: Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  Google Scholar 

  • Schlapbach, L., Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)

    Article  CAS  Google Scholar 

  • Yang, Z.X., Xia, Y.D., Sun, X.Z., Mokaya, R.: Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: Effect of the zeolite template and nitrogen doping. J. Phys. Chem. B 110, 18424–18431 (2006)

    Article  CAS  Google Scholar 

  • Yang, Y.X., Lee, W.J., Zhao, D., Webley, P.A.: Template synthesis of ordered microporous carbons containing well dispersed Platinum nanoparticles. Adv. Func. Mat. (2007a, submitted)

  • Yang, Y., Rosalie, J., Bourgeois, L., Webley, P.A.: Bulk synthesis of carbon nanostructures: hollow stacked-cone-helices by chemical vapor deposition. Mat. Res. Bull. (2007b). doi:10.1016/j.materresbull.2007.08.020

  • Yang, Z., Xia, Y., Mokaya, R.: Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129, 1673–1679 (2007c)

    Article  CAS  Google Scholar 

  • Yoon, J.-H.: Pressure-dependent hydrogen encapsulation in Na12-zeolite. A. J. Phys. Chem. 6066–6068 (1993)

  • Yudasaka, M., Kikuchi, R., Matsui, T., Ohki, Y., Yoshimura, S., Ota, E.: Specific conditions for Ni catalyzed carbon nanotube growth by chemical-vapor-deposition. Appl. Phys. Lett. 67, 2477–2479 (1995)

    Article  CAS  Google Scholar 

  • Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C.X., Khayrullin, I., Dantas, S.O., Marti, I., Ralchenko, V.G.: Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897–901 (1998)

    Article  CAS  Google Scholar 

  • Zuttel, A.: Hydrogen storage methods. Nature 91, 157–172 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Webley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.X., Singh, R.K. & Webley, P.A. Hydrogen adsorption in transition metal carbon nano-structures. Adsorption 14, 265–274 (2008). https://doi.org/10.1007/s10450-007-9089-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9089-2

Keywords

Navigation