Skip to main content

Advertisement

Log in

Adsorption technology for CO2 separation and capture: a perspective

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The capture of CO2 from process and flue gas streams and subsequent sequestration was first proposed as a greenhouse gas mitigation option in the 1990s. This proposal spawned a series of laboratory and field tests in CO2 capture which has now grown into a major world-wide research effort encompassing a myriad of capture technologies and ingenious flow sheets integrating power production and carbon capture. Simultaneously, the explosive growth in materials science in the last two decades has produced a wealth of new materials and knowledge providing us with new avenues to explore to fine tune CO2 adsorption and selectivity. Laboratory and field studies over the last decade have explored the synergy of process and materials to produce numerous CO2 capture technologies and materials based on cyclic adsorption processes. In this brief perspective, we look at some of these developments and comment on the application and limitations of adsorption process to CO2 capture. We identify major engineering obstacles to overcome as well as potential breakthroughs necessary to achieve commercialization of adsorption processes for CO2 capture. Our perspective is primarily restricted to post-combustion flue gas capture and CO2 capture from natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beaver, M.G., Sircar, S.: Adsorption technology for direct recovery of compressed, pure CO2 from a flue gas without pre-compression or pre-drying. Adsorption 16, 103–111 (2010). doi:10.1007/s10450-010-9219-0

    Article  CAS  Google Scholar 

  • Bhown, A.S.A.S., Freeman, B.C.B.C.: Analysis and status of post-combustion carbon dioxide capture technologies. Environ. Sci. Technol. 45, 8624–8632 (2011). doi:10.1021/es104291d

    Article  CAS  Google Scholar 

  • Bosoaga, A., Masek, O., Oakey, J.E.: CO2 capture technologies for cement industry. Energy Procedia 1, 133–140 (2009). doi:10.1016/j.egypro.2009.01.020

    Article  CAS  Google Scholar 

  • Casas, N., Schell, J., Joss, L., Mazzotti, M.: A parametric study of a PSA process for pre-combustion CO2 capture. Sep. Purif. Technol. 104, 183–192 (2013). doi:10.1016/j.seppur.2012.11.018

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009). doi:10.1002/cssc.200900036

    Article  CAS  Google Scholar 

  • Colburn, A.P., Dodge, B.F.: Adsorption process for removal of carbon dioxide from the atmosphere of a submarine. USA Patent 2545194 (1951)

  • Collins, J.J.: Bulk Separation of carbon dioxide from natural gas. USA Patent 3751878 (1973)

  • Ebner, A.D., Ritter, Ja: State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273–1421 (2009). doi:10.1080/01496390902733314

    Article  CAS  Google Scholar 

  • Grande, C., Rodrigues, A.E.: Electric swing adsorption for CO2 removal from flue gases. Int. J. Greenhouse Gas Control 2, 194–202 (2007a). doi:10.1016/S1750-5836(07)00116-8

    Google Scholar 

  • Grande, C.A., Ribeiro, R.P.P.L., Rodrigues, A.E.: CO2 capture from NGCC power stations using electric swing adsorption (ESA). Energy Fuels 23, 2797–2803 (2009). doi:10.1021/ef8010756

    Article  CAS  Google Scholar 

  • Grande, C.A., Rodrigues, A.E.: Layered vacuum pressure-swing adsorption for biogas upgrading. Ind. Eng. Chem. Res. 46, 7844–7848 (2007b). doi:10.1021/ie070942d

    Article  CAS  Google Scholar 

  • Haghpanah, R., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A.: Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture. AIChE J. 00, n/a–n/a (2013). doi:10.1002/aic.14192

  • Haraoka, T., Mogi, Y., Saima, H.: PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation. Kagaku Kogaku Ronbunshu 39, 439–444 (2013). doi:10.1252/kakoronbunshu.39.439

    Article  CAS  Google Scholar 

  • Ishibashi, M., Ota, H., Akutsu, N., Umeda, S., Tajika, M., Izumi, J., Yasutake, A., Kabata, T., Kageyama, Y.: Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manag. 37, 929–933 (1996)

    Article  CAS  Google Scholar 

  • Li, G., Xiao, P., Xu, D., Webley, Pa: Dual mode roll-up effect in multicomponent non-isothermal adsorption processes with multilayered bed packing. Chem. Eng. Sci. 66, 1825–1834 (2011). doi:10.1016/j.ces.2011.01.023

    Article  CAS  Google Scholar 

  • Liu, W., An, H., Qin, C., Yin, J., Wang, G., Feng, B., Xu, M.: Performance enhancement of calcium oxide sorbents for cyclic CO2 capture—a review. Energy Fuels 26, 2751–2767 (2012a)

    Article  CAS  Google Scholar 

  • Liu, Z., Wang, L., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind. Eng. Chem. Res. 51, 7355–7363 (2012b). doi:10.1021/ie3005308

    Article  CAS  Google Scholar 

  • Lively, R.P., Chance, R.R., Kelley, B.T., Deckman, H.W., Drese, J.H., Jones, C.W., Koros, W.J.: Hollow fiber adsorbents for CO2 removal from flue gas. Ind. Eng. Chem. Res. 48, 7314–7324 (2009). doi:10.1021/ie9005244

    Article  CAS  Google Scholar 

  • Maring, B., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Int. J. Greenhouse Gas Control 15, 16–31 (2013)

    Article  CAS  Google Scholar 

  • Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., Thomas, E.M.: Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 5, 7281–7305 (2012). doi:10.1039/c2ee03403d

    Article  CAS  Google Scholar 

  • Murakami, Y., Lijima, A., Ward, J.W.: New Developments in Zeolite Science and Technology. In: 7th International Zeolite Conference, Tokyo 1986. Studies in Surface Science and Catalysis. Elsevier Science Ltd

  • Oexmann, J., Kather, A., Linnenberg, S., Liebenthal, U.: Post-combustion CO2 capture: chemical absorption processes in coal-fired steam power plants. Greenhouse Gases Sci. Technol. 98, 80–98 (2012). doi:10.1002/ghg.1273

    Article  Google Scholar 

  • Qader, A., Hooper, B., Stevens, G., Kentish, S., Webley, P.: Demonstrating carbon capture. Chem. Eng. 821, 30–31 (2009)

    Google Scholar 

  • Rao, V.R., Krishnamurthy, S., Guntuka, S.K., Rajendran, A., Ullah, M.A., Sharratt, P., Karimi, I.A., Farooq, S.: A pilot plant study of a VSA process for CO2 capture from power plant flue gas. Paper presented at the AIChE Annual Meeting, Pittsburgh, PA, USA (2012)

  • Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J.: The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38, 630–671 (2012). doi:10.1016/j.pecs.2012.03.003

    Article  CAS  Google Scholar 

  • SaskPower: Boundary Dam Integrated Carbon Capture and Storage Demonstration Project. http://www.saskpower.com/our-power-future/work-currently-underway/boundary-dam-integrated-carbon-capture-and-storage-demonstration-project/ (2013)

  • Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K.M., Bastow, T.J., Medhekar, N., Doherty, C.M., Hill, A.J., Liu, J.Z., Webley, P.A.: Discriminative Separation of Gases by a “Molecular Trapdoor” Mechanism in Chabazite Zeolites. J. Am. Chem. Soc. 134, 19246–19253 (2012). doi: http://dx.doi.org/10.1021/ja309274y

    Google Scholar 

  • Sjostrom, S., Krutka, H., Starns, T., Campbell, T.: Pilot test results of post-combustion CO2 capture using solid sorbents. Energy Procedia 4, 1584–1592 (2011). doi:10.1016/j.egypro.2011.02.028

    Article  Google Scholar 

  • Spoorthi, G., Thakur, R.S., Kaistha, N., Rao, D.P.: Process intensification in PSA processes for upgrading synthetic landfill and lean natural gases. Adsorption 17, 121–133 (2010). doi:10.1007/s10450-010-9302-6

    Article  Google Scholar 

  • Takeguchi, T., Tanakulrungsank, W., Inui, T.: Separation and/or concentration of CO2 from CO2/N2 gaseous mixture by pressure swing adsorption using metal-incorporated microporous crystals with high surface area. Gas Sep. Purif. 7, 3–9 (1993). doi:10.1016/0950-4214(93)85013-L

    Article  CAS  Google Scholar 

  • Tlili, N., Grévillot, G., Vallières, C.: Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenhouse Gas Control 3, 519–527 (2009). doi:10.1016/j.ijggc.2009.04.005

    Article  CAS  Google Scholar 

  • van Selow, E.R., Cobden, P.D., van den Brink, R.W., Hufton, J.R., Wright, A.: Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology. Energy Procedia 1, 689–696 (2009). doi:10.1016/j.egypro.2009.01.091

    Article  Google Scholar 

  • Voss, C.: Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005). doi:10.1007/s10450-005-5979-3

    Article  Google Scholar 

  • Wang, L., Yang, Y., Shen, W., Kong, X., Li, P., Yu, J., Rodrigues, A.E.: CO2 capture from flue gas in an existing coal-fired power plant by pilot-scale two successive VPSA units. Ind. Eng. Chem. Res. 130514043648000 (2013). doi:10.1021/ie4009716

  • Wang, M., Lawal, a, Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011). doi:10.1016/j.cherd.2010.11.005

    Article  CAS  Google Scholar 

  • Wright, A., White, V., Hufton, J., Selow, E.V., Hinderink, P.: Reduction in the cost of pre-combustion CO2 capture through advancements in sorption-enhanced water-gas-shift. Energy Procedia 1, 707–714 (2009). doi:10.1016/j.egypro.2009.01.093

    Article  CAS  Google Scholar 

  • Xiao, G., Xiao, P., Lee, S., Webley, P.A.: CO2 capture at elevated temperatures by cyclic adsorption processes. RSC Advances 2, 5291–5297 (2012). doi:10.1039/c2ra20174g

    Article  CAS  Google Scholar 

  • Xu, D., Xiao, P., Zhang, J., Li, G., Xiao, G., Webley, P.A., Zhai, Y.: Effects of water vapor on CO2 capture with vacuum swing adsorption using activated carbon. Chem. Eng. J. 230, 64–72 (2013)

    Article  CAS  Google Scholar 

  • Zhao, A., Samanta, A., Sarkar, P., Gupta, R.: Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind. Eng. Chem. Res. 52, 6480–6491 (2013a). doi:10.1021/ie3030533

    Article  CAS  Google Scholar 

  • Zhao, C., Chen, X., Anthony, E.J., Jiang, X., Duan, L., Wu, Y., Dong, W., Zhao, C.: Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog. Energy Combust. Sci. (2013b). doi:10.1016/j.pecs.2013.05.001

    Google Scholar 

Download references

Acknowledgments

We acknowledge funding for this work provided by the Australian Government through the Cooperative Research Centre for Greenhouse Gas Technologies program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Webley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webley, P.A. Adsorption technology for CO2 separation and capture: a perspective. Adsorption 20, 225–231 (2014). https://doi.org/10.1007/s10450-014-9603-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-014-9603-2

Keywords

Navigation