Skip to main content

Advertisement

Log in

AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Ocular neovascularization is a common pathological feature in diabetic retinopathy and neovascular age-related macular degeneration that can lead to severe vision loss. We evaluated the therapeutic efficacy of a novel endogenous inhibitor of angiogenesis, the calreticulin anti-angiogenic domain (CAD180), and its functional 112-residue fragment, CAD-like peptide 112 (CAD112), delivered using a self-complementary adeno-associated virus serotype 2 (scAAV2) in rodent models of oxygen-induced retinopathy and laser-induced choroidal neovascularization. The expression of CAD180 and CAD112 was elevated in human umbilical vein endothelial cells transduced with scAAV2-CAD180 or scAAV2-CAD112, respectively, and both inhibited angiogenic activity in vitro. Intravitreal gene delivery of scAAV2-CAD180 or scAAV2-CAD112 significantly inhibited ischemia-induced retinal neovascularization in rat eyes (CAD180: 52.7% reduction; CAD112: 49.2% reduction) compared to scAAV2-mCherry, as measured in retinal flatmounts stained with isolectin B4. Moreover, the retinal structure and function were unaffected by scAAV2-CAD180 or scAAV2-CAD112, as measured by optical coherence tomography and electroretinography. Moreover, subretinal delivery of scAAV2-CAD180 or scAAV2-CAD112 significantly attenuated laser-induced choroidal neovascularization in mouse eyes compared to scAAV2-mCherry, as measured by fundus fluorescein angiography (CAD180: 62.4% reduction; CAD112: 57.5% reduction) and choroidal flatmounts (CAD180: 40.21% reduction; CAD112: 43.03% reduction). Gene delivery using scAAV2-CAD180 or scAAV2-CAD112 has significant potential as a therapeutic option for the management of ocular neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184(3):301–310. https://doi.org/10.1002/1097-4652(200009)184:3<301:AID-JCP3>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  2. Sapieha P, Hamel D, Shao Z, Rivera JC, Zaniolo K, Joyal JS, Chemtob S (2010) Proliferative retinopathies: angiogenesis that blinds. Int J Biochem Cell Biol 42(1):5–12. https://doi.org/10.1016/j.biocel.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  3. Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med 33(4):295–317. https://doi.org/10.1016/j.mam.2012.04.005

    Article  CAS  Google Scholar 

  4. Campochiaro PA (2015) Molecular pathogenesis of retinal and choroidal vascular diseases. Prog Retin Eye Res 49:67–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Osaadon P, Fagan XJ, Lifshitz T, Levy J (2014) A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye 28(5):510–520. https://doi.org/10.1038/eye.2014.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Writing committee for the diabetic retinopathy clinical research network, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, Baker CW, Berger BB, Bressler NM, Browning D, Elman MJ, Ferris FL, Friedman SM 3rd, Marcus DM, Melia M, Stockdale CR, Sun JK, Beck RW (2015). Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 314(20):2137–2146. https://doi.org/10.1001/jama.2015.15217

    Article  Google Scholar 

  7. Lally DR, Gerstenblith AT, Regillo CD (2012) Preferred therapies for neovascular age-related macular degeneration. Curr Opin Ophthalmol 23(3):182–188. https://doi.org/10.1097/ICU.0b013e328352411c

    Article  PubMed  Google Scholar 

  8. Holz FG, Amoaku W, Donate J, Guymer RH, Kellner U, Schlingemann RO, Weichselberger A, Staurenghi G, Group SS (2011) Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology 118(4):663–671. https://doi.org/10.1016/j.ophtha.2010.12.019

    Article  PubMed  Google Scholar 

  9. Rofagha S, Bhisitkul RB, Boyer DS, Sadda SR, Zhang K, S-US Group (2013) Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120(11):2292–2299. https://doi.org/10.1016/j.ophtha.2013.03.046

    Article  PubMed  Google Scholar 

  10. Falavarjani KG, Nguyen QD (2013) Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye 27(7):787–794. https://doi.org/10.1038/eye.2013.107

    Article  PubMed  Google Scholar 

  11. Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188(12):2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao L, Pike SE, Setsuda J, Parekh J, Gupta G, Raffeld M, Jaffe ES, Tosato G (2000) Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood 96(5):1900–1905

    CAS  PubMed  Google Scholar 

  13. Sheu SJ, Bee YS, Ma YL, Liu GS, Lin HC, Yeh TL, Liou JC, Tai MH (2009) Inhibition of choroidal neovascularization by topical application of angiogenesis inhibitor vasostatin. Mol Vis 15:1897–1905

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bee YS, Sheu SJ, Ma YL, Lin HC, Weng WT, Kuo HM, Hsu HC, Tang CH, Liou JC, Tai MH (2010) Topical application of recombinant calreticulin peptide, vasostatin 48, alleviates laser-induced choroidal neovascularization in rats. Mol Vis 16:756–767

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bee YS, Tu L, Sheu SJ, Lin HC, Tang JH, Wang JH, Prea SM, Dusting GJ, Wu DC, Zhong J, Bui BV, Tai MH, Liu GS (2017) Gene delivery of calreticulin anti-angiogenic domain attenuates the development of choroidal neovascularization in rats. Hum Gene Ther. https://doi.org/10.1089/hum.2016.035

    PubMed  Google Scholar 

  16. Petit L, Khanna H, Punzo C (2016) Advances in gene therapy for diseases of the eye. Hum Gene Ther 27(8):563–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, Schwartz SD, Blumenkranz MS, Chalberg TW, Degli-Esposti MA, Constable IJ (2015) Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386(10011):2395–2403. https://doi.org/10.1016/S0140-6736(15)00345-1

    Article  CAS  PubMed  Google Scholar 

  18. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, Delacono C, Purvis A, Richards S, Le-Halpere A, Connelly J, Wadsworth SC, Varona R, Buggage R, Scaria A, Campochiaro PA (2017) Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet 390(10089):50–61. https://doi.org/10.1016/s0140-6736(17)30979-0

    Article  CAS  PubMed  Google Scholar 

  19. Pike SE, Yao L, Setsuda J, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Atreya CD, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1999) Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94(7):2461–2468

    CAS  PubMed  Google Scholar 

  20. Xiao F, Wei Y, Yang L, Zhao X, Tian L, Ding Z, Yuan S, Lou Y, Liu F, Wen Y, Li J, Deng H, Kang B, Mao Y, Lei S, He Q, Su J, Lu Y, Niu T, Hou J, Huang MJ (2002) A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther 9(18):1207–1213. https://doi.org/10.1038/sj.gt.3301788

    Article  CAS  PubMed  Google Scholar 

  21. Lange-Asschenfeldt B, Velasco P, Streit M, Hawighorst T, Pike SE, Tosato G, Detmar M (2001) The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J Investig Dermatol 117(5):1036–1041. https://doi.org/10.1046/j.0022-202x.2001.01519.x

    Article  CAS  PubMed  Google Scholar 

  22. Huegel R, Velasco P, De la Luz Sierra M, Christophers E, Schroder JM, Schwarz T, Tosato G, Lange-Asschenfeldt B (2007) Novel anti-inflammatory properties of the angiogenesis inhibitor vasostatin. J Investig Dermatol 127(1):65–74. https://doi.org/10.1038/sj.jid.5700484

    Article  CAS  PubMed  Google Scholar 

  23. Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30(5):343–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT (2017) The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2017.03.002

    PubMed  Google Scholar 

  25. Liu GS, Wang JH, Lee JH, Tsai PJ, Tsai HE, Sheu SJ, Lin HC, Dusting GJ, Tai MH, Bee YS (2015) Gene delivery by subconjunctival injection of adenovirus in rats: a study of local distribution transgene duration and safety. PloS one 10(12):e0143956. https://doi.org/10.1371/journal.pone.0143956

    Article  PubMed  PubMed Central  Google Scholar 

  26. McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther J Am Soc Gene Ther 16(10):1648–1656. https://doi.org/10.1038/mt.2008.171

    Article  CAS  Google Scholar 

  27. Kong F, Li W, Li X, Zheng Q, Dai X, Zhou X, Boye SL, Hauswirth WW, Qu J, Pang JJ (2010) Self-complementary AAV5 vector facilitates quicker transgene expression in photoreceptor and retinal pigment epithelial cells of normal mouse. Exp Eye Res 90(5):546–554. https://doi.org/10.1016/j.exer.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, Flannery JG (2009) Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther J Am Soc Gene Ther 17(12):2096–2102. https://doi.org/10.1016/j.ymthe.2016.10.008

    Article  CAS  Google Scholar 

  29. Takahashi K, Igarashi T, Miyake K, Kobayashi M, Yaguchi C, Iijima O, Yamazaki Y, Katakai Y, Miyake N, Kameya S, Shimada T, Takahashi H, Okada T (2017) Improved intravitreal AAV-mediated inner retinal gene transduction after surgical internal limiting membrane peeling in cynomolgus monkeys. Mol Ther J Am Soc Gene Ther 25(1):296–302

    Article  CAS  Google Scholar 

  30. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, Lotery AJ, Downes SM, Webster AR, Seabra MC (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383(9923):1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai CM, Estcourt MJ, Himbeck RP, Lee SY, Yew-San Yeo I, Luu C, Loh BK, Lee MW, Barathi A, Villano J, Ang CL, van der Most RG, Constable IJ, Dismuke D, Samulski RJ, Degli-Esposti MA, Rakoczy EP (2012) Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Ther 19(10):999–1009. https://doi.org/10.1038/gt.2011.169

    Article  CAS  PubMed  Google Scholar 

  33. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5(189):189ra176. https://doi.org/10.1126/scitranslmed.3005708

    Article  Google Scholar 

  34. Ip MS, Scott IU, Brown GC, Brown MM, Ho AC, Huang SS, Recchia FM (2008) Anti-vascular endothelial growth factor pharmacotherapy for age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology 115(10):1837–1846. https://doi.org/10.1016/j.ophtha.2008.08.012

    Article  PubMed  Google Scholar 

  35. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, Gibson A, Sy J, Rundle AC, Hopkins JJ, Rubio RG, Ehrlich JS (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119(4):789–801. https://doi.org/10.1016/j.ophtha.2011.12.039

    Article  PubMed  Google Scholar 

  36. Curtis LH, Hammill BG, Schulman KA, Cousins SW (2010) Risks of mortality, myocardial infarction, bleeding, and stroke associated with therapies for age-related macular degeneration. Arch Ophthalmol 128(10):1273–1279. https://doi.org/10.1001/archophthalmol.2010.223 (Chicago, Ill: 1960)

    Article  PubMed  Google Scholar 

  37. Avery RL, Gordon GM (2016) Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol 134(1):21–29. https://doi.org/10.1001/jamaophthalmol.2015.4070

    Article  PubMed  Google Scholar 

  38. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8(16):1248–1254. https://doi.org/10.1038/sj.gt.3301514

    Article  CAS  PubMed  Google Scholar 

  39. Liu GS, Tsai HE, Weng WT, Liu LF, Weng CH, Chuang MR, Lam HC, Wu CS, Tee R, Wen ZH, Howng SL, Tai MH (2011) Systemic pro-opiomelanocortin expression induces melanogenic differentiation and inhibits tumor angiogenesis in established mouse melanoma. Hum Gene Ther 22(3):325–335. https://doi.org/10.1089/hum.2010.090

    Article  CAS  PubMed  Google Scholar 

  40. Carpentier G, Martinelli M, Courty J, Cascone I (2012) Angiogenesis analyzer for ImageJ. In: 4th ImageJ User and developer conference proceedings, Mondorf-les-Bains, Luxembourg

  41. Deliyanti D, Miller AG, Tan G, Binger KJ, Samson AL, Wilkinson-Berka JL (2012) Neovascularization is attenuated with aldosterone synthase inhibition in rats with retinopathy. Hypertension 59(3):607–613. https://doi.org/10.1161/hypertensionaha.111.188136

    Article  CAS  PubMed  Google Scholar 

  42. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  43. Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL, Smith LE (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nivison-Smith L, Zhu Y, Whatham A, Bui BV, Fletcher EL, Acosta ML, Kalloniatis M (2014) Sildenafil alters retinal function in mouse carriers of retinitis pigmentosa. Exp Eye Res 128:43–56. https://doi.org/10.1016/j.exer.2014.08.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The National Health and Medical Research Council of Australia (#1061912), The Natural Science Foundation of Guangdong Province, China (2015A030310158 and 2014A030313359), The Science and Technology Planning Project of Guangdong Province, China (2015B020226003), The Scientific and Cultivation Foundation of the First Affiliated Hospital of Jinan University (2015201), The fundamental Research Funds for the Central Universities (21611446), The Ophthalmic Research Institute of Australia, The Angior Family Foundation and The Rebecca L. Cooper Medical Research Foundation. J.H.W. received a R.B. McComas Research Scholarship in Ophthalmology, a Gordon P. Castles Scholarship and a Melbourne Research Scholarship. G.J.D. received a Principal Research Fellowship from NHMRC. The Centre for Eye Research, Australia, received Operational Infrastructure Support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.T., J.Z., and G.S.L. Methodology, L.T., V.A.B., M.H.T., B.V.B., and G.S.L. Formal analysis, L.T., J.H.W., V.A.B., B.V.B., and G.S.L. Investigation, L.T., J.H.W., V.A.B., S.M.P., Z.H., J.B., B.V.B., and G.S.L. Resources, A.E.K., G.J.L., I.E.A., and M.H.T. Data curation, L.T., B.V.B., J.Z., and G.S.L. Writing–original draft, L.T., J.Z., and G.S.L. Writing–review & editing, J.H.W., V.A.B., J.H.L., A.E.K., I.E.A., Y.S.B., G.J.D., and B.V.B. Visualization, L.T., and G.S.L. Supervision, G.J.D., B.V.B., J.Z., and G.S.L. Project administration, L.T., and G.S.L. Funding acquisition, G.J.D., J.Z., and G.S.L.

Corresponding authors

Correspondence to Jingxiang Zhong or Guei-Sheung Liu.

Ethics declarations

Conflict of interest

None of the authors have conflicts of interest to disclose.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, L., Wang, JH., Barathi, V.A. et al. AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization. Angiogenesis 21, 95–109 (2018). https://doi.org/10.1007/s10456-017-9591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-017-9591-4

Keywords

Navigation