Skip to main content

Advertisement

Log in

A drug-tunable Flt23k gene therapy for controlled intervention in retinal neovascularization

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Gene therapies that chronically suppress vascular endothelial growth factor (VEGF) represent a new approach for managing retinal vascular leakage and neovascularization. However, constitutive suppression of VEGF in the eye may have deleterious side effects. Here, we developed a novel strategy to introduce Flt23k, a decoy receptor that binds intracellular VEGF, fused to the destabilizing domain (DD) of Escherichia coli dihydrofolate reductase (DHFR) into the retina. The expressed DHFR(DD)-Flt23k fusion protein is degraded unless “switched on” by administering a stabilizer; in this case, the antibiotic trimethoprim (TMP). Cells transfected with the DHFR(DD)-Flt23k construct expressed the fusion protein at levels correlated with the TMP dose. Stabilization of the DHFR(DD)-Flt23k fusion protein by TMP was able to inhibit intracellular VEGF in hypoxic cells. Intravitreal injection of self-complementary adeno-associated viral vector (scAAV)-DHFR(DD)-Flt23k and subsequent administration of TMP resulted in tunable suppression of ischemia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy (OIR). Hence, our study suggests a promising novel approach for the treatment of retinal neovascularization.

Graphic abstract

Schematic diagram of the tunable system utilizing the DHFR(DD)-Flt23k approach to reduce VEGF secretion. a The schematic shows normal VEGF secretion. b Without the ligand TMP, the DHFR(DD)-Flt23k protein is destabilized and degraded by the proteasome. c In the presence of the ligand TMP, DHFR(DD)-Flt23k is stabilized and sequestered in the ER, thereby conditionally inhibiting VEGF. Green lines indicate the intracellular and extracellular distributions of VEGF. Blue lines indicate proteasomal degradation of the DHFR(DD)-Flt23k protein. Orange lines indicate the uptake of cell-permeable TMP. TMP, trimethoprim; VEGF, vascular endothelial growth factor; ER, endoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the article/supplementary materials.

References

  1. Sun Y, Smith LEH (2018) Retinal vasculature in development and diseases. Annu Rev Vis Sci 4:101–122

    Article  Google Scholar 

  2. Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, Browning DJ, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun JK, Beck RW (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372(13):1193–1203

    Article  CAS  Google Scholar 

  3. Mehta H, Tufail A, Daien V, Lee AY, Nguyen V, Ozturk M, Barthelmes D, Gillies MC (2018) Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors. Prog Retin Eye Res 65:127–146. https://doi.org/10.1016/j.preteyeres.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Avery RL, Gordon GM (2016) Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol 134(1):21–29. https://doi.org/10.1001/jamaophthalmol.2015.4070

    Article  PubMed  Google Scholar 

  5. Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, Schwartz SD, Blumenkranz MS, Chalberg TW, Degli-Esposti MA, Constable IJ (2015) Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386(10011):2395–2403. https://doi.org/10.1016/s0140-6736(15)00345-1

    Article  CAS  PubMed  Google Scholar 

  6. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, Delacono C, Purvis A, Richards S, Le-Halpere A, Connelly J, Wadsworth SC, Varona R, Buggage R, Scaria A, Campochiaro PA (2017) Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet 390(10089):50–61. https://doi.org/10.1016/s0140-6736(17)30979-0

    Article  CAS  PubMed  Google Scholar 

  7. Luo L, Zhang X, Hirano Y, Tyagi P, Barabás P, Uehara H, Miya TR, Singh N, Archer B, Qazi Y, Jackman K, Das SK, Olsen T, Chennamaneni SR, Stagg BC, Ahmed F, Emerson L, Zygmunt K, Whitaker R, Mamalis C, Huang W, Gao G, Srinivas SP, Krizaj D, Baffi J, Ambati J, Kompella UB, Ambati BK (2013) Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 7(4):3264–3275. https://doi.org/10.1021/nn305958y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santiago CP, Keuthan CJ, Boye SL, Boye SE, Imam AA, Ash JD (2018) A drug-tunable gene therapy for broad-spectrum protection against retinal degeneration. Mol Ther 26(10):2407–2417

    Article  CAS  Google Scholar 

  9. Datta S, Renwick M, Chau VQ, Zhang F, Nettesheim ER, Lipinski DM, Hulleman JD (2018) A destabilizing domain allows for fast, noninvasive, conditional control of protein abundance in the mouse eye—implications for ocular gene therapy. Investig Ophthalmol Vis Sci 59(12):4909–4920

    Article  CAS  Google Scholar 

  10. Singh N, Amin S, Richter E, Rashid S, Scoglietti V, Jani PD, Wang J, Kaur R, Ambati J, Dong Z, Ambati BK (2005) Flt-1 intraceptors inhibit hypoxia-induced VEGF expression in vitro and corneal neovascularization in vivo. Investig Ophthalmol Vis Sci 46(5):1647–1652. https://doi.org/10.1167/iovs.04-1172

    Article  Google Scholar 

  11. Zhang X, Das SK, Passi SF, Uehara H, Bohner A, Chen M, Tiem M, Archer B, Ambati BK (2015) AAV2 delivery of Flt23k intraceptors inhibits murine choroidal neovascularization. Mol Ther 23(2):226–234

    Article  CAS  Google Scholar 

  12. Egeler EL, Urner LM, Rakhit R, Liu CW, Wandless TJ (2011) Ligand-switchable substrates for a ubiquitin-proteasome system. J Biol Chem 286(36):31328–31336. https://doi.org/10.1074/jbc.M111.264101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yokoi K, Kachi S, Zhang HS, Gregory PD, Spratt SK, Samulski RJ, Campochiaro PA (2007) Ocular gene transfer with self-complementary AAV vectors. Investig Ophthalmol Vis Sci 48(7):3324–3328. https://doi.org/10.1167/iovs.06-1306

    Article  Google Scholar 

  14. McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 16(10):1648–1656. https://doi.org/10.1038/mt.2008.171

    Article  CAS  PubMed  Google Scholar 

  15. St-Onge L, Furth PA, Gruss P (1996) Temporal control of the Cre recombinase in transgenic mice by a tetracycline responsive promoter. Nucleic Acids Res 24(19):3875–3877

    Article  CAS  Google Scholar 

  16. Prentice HM, Biswal MR, Dorey CK, Blanks JC (2011) Hypoxia-regulated retinal glial cell-specific promoter for potential gene therapy in disease. Investig Ophthalmol Vis Sci 52(12):8562–8570

    Article  CAS  Google Scholar 

  17. Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17(9):981–988

    Article  CAS  Google Scholar 

  18. Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48(5):899–907. https://doi.org/10.1016/0092-8674(87)90086-9

    Article  CAS  PubMed  Google Scholar 

  19. Sulfamethoxazole/Trimethoprim Dosage (2019) https://www.drugs.com/dosage/sulfamethoxazole-trimethoprim.html

  20. Güzel Bayülken D, Bostancıoğlu RB, Koparal AT, Ayaz Tüylü B, Dağ A, Benkli K (2018) Assessment of in vitro cytotoxic and genotoxic activities of some trimethoprim conjugates. Cytotechnology 70(3):1051–1059. https://doi.org/10.1007/s10616-018-0187-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203–209

    PubMed  PubMed Central  Google Scholar 

  22. Rowan S, Jiang S, Korem T, Szymanski J, Chang ML, Szelog J, Cassalman C, Dasuri K, McGuire C, Nagai R, Du XL, Brownlee M, Rabbani N, Thornalley PJ, Baleja JD, Deik AA, Pierce KA, Scott JM, Clish CB, Smith DE, Weinberger A, Avnit-Sagi T, Lotan-Pompan M, Segal E, Taylor A (2017) Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc Natl Acad Sci USA 114(22):E4472–e4481. https://doi.org/10.1073/pnas.1702302114

    Article  CAS  PubMed  Google Scholar 

  23. Peng H, Chau VQ, Phetsang W, Sebastian RM, Stone MRL, Datta S, Renwick M, Tamer YT, Toprak E, Koh AY, Blaskovich MAT, Hulleman JD (2019) Non-antibiotic small-molecule regulation of DHFR-based destabilizing domains in vivo. Mol Ther Methods Clin Dev 15:27–39

    Article  CAS  Google Scholar 

  24. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72(3):2224–2232

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  26. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35(9):3429–3435

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank UTAS CFF animal technicians, Karen Shiels, Keri Smith, Heather Howard, Lisa Harding and Danielle Eastley, for their assistance with rat chamber operation. This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC; 1061912, 1185600, 1108311 and 1161583), the Ophthalmic Research Institute of Australia, the National Natural Science Foundation of China (8197030485) and the Rebecca L Cooper Medical Research Foundation. A.W.H. received an NHMRC Practitioner Fellowship (1103329). L.L. was supported by the Department of Science and Higher Education of Ministry of National Defense, Republic of Poland (“Kościuszko” k/10/8047/DNiSW/T-WIHE/3) and the National Science Centre, Republic of Poland (UMO-2017/25/B/NZ1/02790). The Centre for Eye Research Australia receives Operational Infrastructure Support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—J.C., G-S.L. Methodology—J.C., F-L.L., J.Y.K.L., G-S.L. Formal Analysis—J.C., F-L.L., G-S.L. Investigation—J.C., F-L.L., J.Y.K.L., L.T., Y-F.C., J-H.W., F.L., V.H.Y.W. Resources—G.J.D., H.-H.S., B.V.B., L.L., A.W.H., J.Z., G-S.L. Data Curation—J.C., G-S.L. Writing (Original Draft)—J.C., G-S.L. Writing (Review & Editing)—J.Y.K.L., J-H.W., F-L.L., L.L., G.J.D., V.H.Y.W., B.V.B., J.Z. Visualization—J.C., G-S.L. Supervision—J.Z., G.S.L. Project Administration—J.C., G-S.L. Funding Acquisition—J.Z., G-S.L.

Corresponding author

Correspondence to Guei-Sheung Liu.

Ethics declarations

Competing interests

The authors have declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15056 kb)

Supplementary material 2 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lin, FL., Leung, J.Y.K. et al. A drug-tunable Flt23k gene therapy for controlled intervention in retinal neovascularization. Angiogenesis 24, 97–110 (2021). https://doi.org/10.1007/s10456-020-09745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09745-7

Keywords

Navigation