Skip to main content

Advertisement

Log in

TAK1 signaling is a potential therapeutic target for pathological angiogenesis

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell survival and death. TAK1 is activated in response to various stimuli such as proinflammatory cytokines, hypoxia, and oxidative stress. Emerging evidence has recently suggested that TAK1 is intimately involved in angiogenesis and mediates pathogenic processes related to angiogenesis. Several detailed mechanisms by which TAK1 regulates pathological angiogenesis have been clarified, and potential therapeutics targeting TAK1 have emerged. In this review, we summarize recent studies of TAK1 in angiogenesis and discuss the crosstalk between TAK1 and signaling pathways involved in pathological angiogenesis. We also discuss the approaches for selectively targeting TAK1 and highlight the rationales of therapeutic strategies based on TAK1 inhibition for the treatment of pathological angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilting J, Brand-Saberi B, Kurz H, Christ B (1995) Development of the embryonic vascular system. Cell Mol Biol Res 41(4):219–232

    CAS  PubMed  Google Scholar 

  2. Noishiki C, Yuge S, Ando K, Wakayama Y, Mochizuki N, Ogawa R, Fukuhara S (2019) Live imaging of angiogenesis during cutaneous wound healing in adult zebrafish. Angiogenesis 22(2):341–354. https://doi.org/10.1007/s10456-018-09660-y

    Article  PubMed  Google Scholar 

  3. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    Article  CAS  PubMed  Google Scholar 

  4. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. https://doi.org/10.1038/386671a0

    Article  CAS  PubMed  Google Scholar 

  5. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. https://doi.org/10.1146/annurev-cellbio-092910-154002

    Article  CAS  PubMed  Google Scholar 

  6. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426. https://doi.org/10.1007/s10456-017-9562-9

    Article  CAS  PubMed  Google Scholar 

  7. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6(11):1087–1095

    Article  CAS  PubMed  Google Scholar 

  8. Dai L, Aye Thu C, Liu XY, Xi J, Cheung PC (2012) TAK1, more than just innate immunity. IUBMB Life 64(10):825–834. https://doi.org/10.1002/iub.1078

    Article  CAS  PubMed  Google Scholar 

  9. Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6(3):203–208. https://doi.org/10.1016/j.ccr.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Naito H, Iba T, Wakabayashi T, Tai-Nagara I, Suehiro JI, Jia W, Eino D, Sakimoto S, Muramatsu F, Kidoya H, Sakurai H, Satoh T, Akira S, Kubota Y, Takakura N (2019) TAK1 prevents endothelial apoptosis and maintains vascular integrity. Dev Cell 48(2):151–166. https://doi.org/10.1016/j.devcel.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J (2012) TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood 120(18):3846–3857. https://doi.org/10.1182/blood-2012-03-416198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science (New York, NY) 270(5244):2008–2011. https://doi.org/10.1126/science.270.5244.2008

    Article  CAS  Google Scholar 

  13. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19(22):2668–2681. https://doi.org/10.1101/gad.1360605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A, van Aalten DM (2012) O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J 31(6):1394–1404. https://doi.org/10.1038/emboj.2012.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A (2017) Post-translational modifications of the TAK1-TAB complex. Int J Mol Sci. https://doi.org/10.3390/ijms18010205

    Article  PubMed  PubMed Central  Google Scholar 

  16. Koziczak-Holbro M, Littlewood-Evans A, Pöllinger B, Kovarik J, Dawson J, Zenke G, Burkhart C, Müller M, Gram H (2009) The critical role of kinase activity of interleukin-1 receptor-associated kinase 4 in animal models of joint inflammation. Arthritis Rheum 60(6):1661–1671. https://doi.org/10.1002/art.24552

    Article  CAS  PubMed  Google Scholar 

  17. Henderson C, Goldbach-Mansky R (2010) Monogenic IL-1 mediated autoinflammatory and immunodeficiency syndromes: finding the right balance in response to danger signals. Clin Immunol 135(2):210–222. https://doi.org/10.1016/j.clim.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen ZJ (2005) Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 7(8):758–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scholz R, Sidler CL, Thali RF, Winssinger N, Cheung PCF, Neumann D (2010) Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process. J Biol Chem 285(33):25753–25766. https://doi.org/10.1074/jbc.M109.093468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singhirunnusorn P, Suzuki S, Kawasaki N, Saiki I, Sakurai H (2005) Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 280(8):7359–7368. https://doi.org/10.1074/jbc.M407537200

    Article  CAS  PubMed  Google Scholar 

  21. Naito H, Takakura N (2019) TAK1 safeguards endothelial cells from gut microbes and inflammation. Mol Cell Oncol 6(3):1588657. https://doi.org/10.1080/23723556.2019.1588657

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mihaly SR, Ninomiya-Tsuji J, Morioka S (2014) TAK1 control of cell death. Cell Death Differ 21(11):1667–1676. https://doi.org/10.1038/cdd.2014.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204

    Article  PubMed  Google Scholar 

  24. Munn LL (2017) Cancer and inflammation. Wiley Interdiscip Rev 9(2):e1370

    Google Scholar 

  25. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845

    Article  CAS  PubMed  Google Scholar 

  26. Kim YW, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123(5):625–631. https://doi.org/10.1182/blood-2013-09-512749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang YJ, Nan GX (2019) Oxidative stress-induced angiogenesis. J Clin Neurosci 63:13–16. https://doi.org/10.1016/j.jocn.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  28. Russo MV, Latour LL, McGavern DB (2018) Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat Immunol 19(5):442–452. https://doi.org/10.1038/s41590-018-0086-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harbor Perspect Biol. https://doi.org/10.1101/cshperspect.a006049

    Article  Google Scholar 

  30. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461(7260):114–119. https://doi.org/10.1038/nature08247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724):252–256. https://doi.org/10.1038/18465

    Article  CAS  PubMed  Google Scholar 

  32. Yang L, Joseph S, Sun T, Hoffmann J, Thevissen S, Offermanns S, Strilic B (2019) TAK1 regulates endothelial cell necroptosis and tumor metastasis. Cell Death Differ 26(10):1987–1997. https://doi.org/10.1038/s41418-018-0271-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choo MK, Sakurai H, Koizumi K, Saiki I (2006) TAK1-mediated stress signaling pathways are essential for TNF-alpha-promoted pulmonary metastasis of murine colon cancer cells. Int J Cancer 118(11):2758–2764. https://doi.org/10.1002/ijc.21734

    Article  CAS  PubMed  Google Scholar 

  34. Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S, Ciciliano JC, Smas ME, Winokur D, Gilman AJ, Ulman MJ, Xega K, Contino G, Alagesan B, Brannigan BW, Milos PM, Ryan DP, Sequist LV, Bardeesy N, Ramaswamy S, Toner M, Maheswaran S, Haber DA (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487(7408):510–513. https://doi.org/10.1038/nature11217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bang D, Wilson W, Ryan M, Yeh JJ, Baldwin AS (2013) GSK-3alpha promotes oncogenic KRAS function in pancreatic cancer via TAK1-TAB stabilization and regulation of noncanonical NF-kappaB. Cancer Discov 3(6):690–703. https://doi.org/10.1158/2159-8290.cd-12-0541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao J, Wang Y, Zhang W, Zhang J, Lu S, Meng K, Yin X, Sun Z, He QY (2020) C20orf27 promotes cell growth and proliferation of colorectal cancer via the TGFbetaR-TAK1-NFkB pathway. Cancers. https://doi.org/10.3390/cancers12020336

    Article  PubMed  PubMed Central  Google Scholar 

  37. Singh K, Gupta A, Sarkar A, Gupta I, Rana S, Sarkar S, Khan S (2020) Arginyltransferase knockdown attenuates cardiac hypertrophy and fibrosis through TAK1-JNK1/2 pathway. Sci Rep 10(1):598. https://doi.org/10.1038/s41598-019-57379-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song Z, Zhu X, Jin R, Wang C, Yan J, Zheng Q, Nanda A, Granger DN, Li G (2014) Roles of the kinase TAK1 in CD40-mediated effects on vascular oxidative stress and neointima formation after vascular injury. PLoS ONE 9(7):e101671. https://doi.org/10.1371/journal.pone.0101671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714. https://doi.org/10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  40. Scarneo SA, Eibschutz LS, Bendele PJ, Yang KW, Totzke J, Hughes P, Fox DA, Haystead TAJ (2019) Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res Ther 21(1):292. https://doi.org/10.1186/s13075-019-2073-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang MY, Ho FM, Wang JS, Kang HC, Chang Y, Ye ZX, Lin WW (2010) AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1–p38 mitogen-activated protein kinase signaling pathway. Biochem Pharmacol 80(8):1210–1220. https://doi.org/10.1016/j.bcp.2010.06.049

    Article  CAS  PubMed  Google Scholar 

  42. Momcilovic M, Hong SP, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281(35):25336–25343. https://doi.org/10.1074/jbc.M604399200

    Article  CAS  PubMed  Google Scholar 

  43. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci 92(12):5510. https://doi.org/10.1073/pnas.92.12.5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bardos JI, Ashcroft M (2005) Negative and positive regulation of HIF-1: a complex network. Biochem Biophys Acta 1755(2):107–120. https://doi.org/10.1016/j.bbcan.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  45. Poon E, Harris AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26. https://doi.org/10.1017/s1462399409001173

    Article  PubMed  Google Scholar 

  46. Nicolas S, Abdellatef S, Haddad MA, Fakhoury I, El-Sibai M (2019) Hypoxia and EGF stimulation regulate VEGF expression in human glioblastoma multiforme (GBM) cells by differential regulation of the PI3K/Rho-GTPase and MAPK pathways. Cells. https://doi.org/10.3390/cells8111397

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xia JB, Liu GH, Chen ZY, Mao CZ, Zhou DC, Wu HY, Park KS, Zhao H, Kim SK, Cai DQ, Qi XF (2016) Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine 81:63–70. https://doi.org/10.1016/j.cyto.2016.02.007

    Article  CAS  PubMed  Google Scholar 

  48. Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105(2):114–127. https://doi.org/10.1161/circresaha.109.201590

    Article  CAS  PubMed  Google Scholar 

  49. Dengler F (2020) Activation of AMPK under hypoxia: many roads leading to Rome. Int J Mol Sci. https://doi.org/10.3390/ijms21072428

    Article  PubMed  PubMed Central  Google Scholar 

  50. D’Ignazio L, Batie M, Rocha S (2017) Hypoxia and inflammation in cancer, focus on HIF and NF-kappaB. Biomedicines. https://doi.org/10.3390/biomedicines5020021

    Article  PubMed  PubMed Central  Google Scholar 

  51. Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S (2010) Mechanism of hypoxia-induced NF-kappaB. Mol Cell Biol 30(20):4901–4921. https://doi.org/10.1128/mcb.00409-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Melvin A, Mudie S, Rocha S (2011) Further insights into the mechanism of hypoxia-induced NFkappaB [corrected]. Cell Cycle 10(6):879–882. https://doi.org/10.4161/cc.10.6.15157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang B, Wang X-b, Chen L-y, Huang L, Dong R-z (2013) Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis. Biochem Biophys Res Commun 437(1):1–6. https://doi.org/10.1016/j.bbrc.2013.05.090

    Article  CAS  PubMed  Google Scholar 

  55. Lee Y-S, Kim Y-S, Lee S-Y, Kim G-H, Kim B-J, Lee S-H, Lee K-U, Kim G-S, Kim S-W, Koh J-M (2010) AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone 47(5):926–937. https://doi.org/10.1016/j.bone.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  56. Zippel N, Malik RA, Frömel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-β–activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-α1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33(12):2792–2799. https://doi.org/10.1161/ATVBAHA.113.301848

    Article  CAS  PubMed  Google Scholar 

  57. Nagata D, Mogi M, Walsh K (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 278(33):31000–31006. https://doi.org/10.1074/jbc.M300643200

    Article  CAS  PubMed  Google Scholar 

  58. Omori E, Inagaki M, Mishina Y, Matsumoto K, Ninomiya-Tsuji J (2012) Epithelial transforming growth factor beta-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proc Natl Acad Sci USA 109(9):3365–3370. https://doi.org/10.1073/pnas.1116188109

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zippel N, Malik RA, Fromel T, Popp R, Bess E, Strilic B, Wettschureck N, Fleming I, Fisslthaler B (2013) Transforming growth factor-beta-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-alpha1 and redox balance in endothelial cells. Arterioscler Thromb Vasc Biol 33(12):2792–2799. https://doi.org/10.1161/ATVBAHA.113.301848

    Article  CAS  PubMed  Google Scholar 

  60. Kajino-Sakamoto R, Omori E, Nighot PK, Blikslager AT, Matsumoto K, Ninomiya-Tsuji J (2010) TGF-beta-activated kinase 1 signaling maintains intestinal integrity by preventing accumulation of reactive oxygen species in the intestinal epithelium. J Immunol 185(8):4729–4737. https://doi.org/10.4049/jimmunol.0903587

    Article  CAS  PubMed  Google Scholar 

  61. Chan EC, van Wijngaarden P, Chan E, Ngo D, Wang JH, Peshavariya HM, Dusting GJ, Liu GS (2016) NADPH oxidase 2 plays a role in experimental corneal neovascularization. Clin Sci 130(9):683–696. https://doi.org/10.1042/cs20150103

    Article  CAS  Google Scholar 

  62. Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM, Brandes RP (2012) Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 110(9):1217–1225. https://doi.org/10.1161/circresaha.112.267054

    Article  PubMed  Google Scholar 

  63. Lou Z, Wang AP, Duan XM, Hu GH, Song GL, Zuo ML, Yang ZB (2018) Upregulation of NOX2 and NOX4 mediated by TGF-beta signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury. Cell Physiol Biochem 46(5):2103–2113. https://doi.org/10.1159/000489450

    Article  CAS  PubMed  Google Scholar 

  64. Wei Y, Gong J, Xu Z, Duh EJ (2016) Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy. Free Radical Biol Med 99:234–243. https://doi.org/10.1016/j.freeradbiomed.2016.08.013

    Article  CAS  Google Scholar 

  65. Menden H, Tate E, Hogg N, Sampath V (2013) LPS-mediated endothelial activation in pulmonary endothelial cells: role of Nox2-dependent IKK-beta phosphorylation. Am J Physiol Lung Cell Mol Physiol 304(6):L445-455. https://doi.org/10.1152/ajplung.00261.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125(Pt 9):2115–2125. https://doi.org/10.1242/jcs.095216

    Article  CAS  PubMed  Google Scholar 

  67. Neurath KM, Keough MP, Mikkelsen T, Claffey KP (2006) AMP-dependent protein kinase alpha 2 isoform promotes hypoxia-induced VEGF expression in human glioblastoma. Glia 53(7):733–743. https://doi.org/10.1002/glia.20326

    Article  PubMed  Google Scholar 

  68. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. https://doi.org/10.1056/nejm197111182852108

    Article  CAS  PubMed  Google Scholar 

  69. Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153. https://doi.org/10.1038/nm0295-149

    Article  CAS  PubMed  Google Scholar 

  70. Kaminska B, Kocyk M, Kijewska M (2013) TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol 986:171–187. https://doi.org/10.1007/978-94-007-4719-7_9

    Article  CAS  PubMed  Google Scholar 

  71. Kaminska B, Cyranowski S (2020) Recent advances in understanding mechanisms of TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol 1202:179–201. https://doi.org/10.1007/978-3-030-30651-9_9

    Article  CAS  PubMed  Google Scholar 

  72. Safina A, Ren MQ, Vandette E, Bakin AV (2008) TAK1 is required for TGF-beta 1-mediated regulation of matrix metalloproteinase-9 and metastasis. Oncogene 27(9):1198–1207. https://doi.org/10.1038/sj.onc.1210768

    Article  CAS  PubMed  Google Scholar 

  73. Blanco S, Santos C, Lazo PA (2007) Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 27(20):7273–7283. https://doi.org/10.1128/mcb.00025-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rossino MG, Lulli M, Amato R, Cammalleri M, Monte MD, Casini G (2020) Oxidative stress induces a VEGF autocrine loop in the retina: relevance for diabetic retinopathy. Cells. https://doi.org/10.3390/cells9061452

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hu T, Li LF, Shen J, Zhang L, Cho CH (2015) Chronic inflammation and colorectal cancer: the role of vascular endothelial growth factor. Curr Pharm Des 21(21):2960–2967. https://doi.org/10.2174/1381612821666150514104244

    Article  CAS  PubMed  Google Scholar 

  76. Apte RS, Chen DS, Ferrara N (2019) VEGF in signaling and disease: beyond discovery and development. Cell 176(6):1248–1264. https://doi.org/10.1016/j.cell.2019.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lau CML, Yu Y, Jahanmir G, Chau Y (2018) Controlled release technology for anti-angiogenesis treatment of posterior eye diseases: current status and challenges. Adv Drug Deliv Rev 126:145–161. https://doi.org/10.1016/j.addr.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  78. Sankar MJ, Sankar J, Chandra P (2018) Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD009734.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mehta H, Tufail A, Daien V, Lee AY, Nguyen V, Ozturk M, Barthelmes D, Gillies MC (2018) Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors. Prog Retin Eye Res 65:127–146. https://doi.org/10.1016/j.preteyeres.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  80. Zimna A, Kurpisz M (2015) Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int 2015:549412. https://doi.org/10.1155/2015/549412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Melvin A, Mudie S, Rocha S (2011) Further insights into the mechanism of hypoxia-induced NFκB [corrected]. Cell Cycle 10(6):879–882. https://doi.org/10.4161/cc.10.6.15157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin FL, Wang JH, Chen J, Zhu L, Chuang YF, Tu L, Ma C, Lama S, Ling D, Wong RCB, Hewitt AW, Tseng CL, Bui BV, van Wijngaarden P, Dusting GJ, Wang PY, Liu GS (2021) TAK1 blockade as a therapy for retinal neovascularization. bioRxiv. https://doi.org/10.1101/2021.01.29.428701

  83. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. https://doi.org/10.1161/circresaha.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Izuta H, Chikaraishi Y, Adachi T, Shimazawa M, Sugiyama T, Ikeda T, Hara H (2009) Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients. Mol Vis 15:2663–2672

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, Mihara M, Tsuchiya M, Matsumoto K (2003) A resorcylic acid lactone, 5Z–7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 278(20):18485–18490. https://doi.org/10.1074/jbc.M207453200

    Article  CAS  PubMed  Google Scholar 

  86. Wu J, Powell F, Larsen NA, Lai Z, Byth KF, Read J, Gu RF, Roth M, Toader D, Saeh JC, Chen H (2013) Mechanism and in vitro pharmacology of TAK1 inhibition by (5Z)-7-Oxozeaenol. ACS Chem Biol 8(3):643–650. https://doi.org/10.1021/cb3005897

    Article  CAS  PubMed  Google Scholar 

  87. Iriondo O, Liu Y, Lee G, Elhodaky M, Jimenez C, Li L, Lang J, Wang P, Yu M (2018) TAK1 mediates microenvironment-triggered autocrine signals and promotes triple-negative breast cancer lung metastasis. Nat Commun 9(1):1994. https://doi.org/10.1038/s41467-018-04460-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang HL, Chiang CH, Hung WC, Hou MF (2015) Targeting of TGF-β-activated protein kinase 1 inhibits chemokine (C-C motif) receptor 7 expression, tumor growth and metastasis in breast cancer. Oncotarget 6(2):995–1007. https://doi.org/10.18632/oncotarget.2739

    Article  PubMed  Google Scholar 

  89. Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, EJ DEB, (2012) Effects of (5Z)-7-oxozeaenol on the oxidative pathway of cancer cells. Anticancer Res 32(7):2665–2671

    PubMed  PubMed Central  Google Scholar 

  90. Guan S, Lu J, Zhao Y, Woodfield SE, Zhang H, Xu X, Yu Y, Zhao J, Bieerkehazhi S, Liang H, Yang J, Zhang F, Sun S (2017) TAK1 inhibitor 5Z–7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis. Oncotarget 8(20):33666–33675. https://doi.org/10.18632/oncotarget.16895

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang D, Yan H, Li H, Hao S, Zhuang Z, Liu M, Sun Q, Yang Y, Zhou M, Li K, Hang C (2015) TGFβ-activated kinase 1 (TAK1) inhibition by 5Z–7-oxozeaenol attenuates early brain injury after experimental subarachnoid hemorrhage. J Biol Chem 290(32):19900–19909. https://doi.org/10.1074/jbc.M115.636795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Neubert M, Ridder DA, Bargiotas P, Akira S, Schwaninger M (2011) Acute inhibition of TAK1 protects against neuronal death in cerebral ischemia. Cell Death Differ 18(9):1521–1530. https://doi.org/10.1038/cdd.2011.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. White BJ, Tarabishy S, Venna VR, Manwani B, Benashski S, McCullough LD, Li J (2012) Protection from cerebral ischemia by inhibition of TGFβ-activated kinase. Exp Neurol 237(1):238–245. https://doi.org/10.1016/j.expneurol.2012.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Totzke J, Gurbani D, Raphemot R, Hughes PF, Bodoor K, Carlson DA, Loiselle DR, Bera AK, Eibschutz LS, Perkins MM, Eubanks AL, Campbell PL, Fox DA, Westover KD, Haystead TAJ, Derbyshire ER (2017) Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-alpha Inhibition for cancer and autoimmune disease. Cell Chem Biol 24(8):1029-1039.e1027. https://doi.org/10.1016/j.chembiol.2017.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan L, Nomanbhoy T, Gurbani D, Patricelli M, Hunter J, Geng J, Herhaus L, Zhang J, Pauls E, Ham Y, Choi HG, Xie T, Deng X, Buhrlage SJ, Sim T, Cohen P, Sapkota G, Westover KD, Gray NS (2015) Discovery of type II inhibitors of TGFbeta-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J Med Chem 58(1):183–196. https://doi.org/10.1021/jm500480k

    Article  CAS  PubMed  Google Scholar 

  96. Wang Z, Zhang H, Shi M, Yu Y, Wang H, Cao WM, Zhao Y, Zhang H (2016) TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells. Sci Rep 6:32737. https://doi.org/10.1038/srep32737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang H, Chen Z, Li Y, Ji Q (2018) NG25, an inhibitor of transforming growth factorbetaactivated kinase 1, ameliorates neuronal apoptosis in neonatal hypoxicischemic rats. Mol Med Rep 17(1):1710–1716. https://doi.org/10.3892/mmr.2017.8024

    Article  CAS  PubMed  Google Scholar 

  98. Totzke J, Gurbani D, Raphemot R, Hughes PF, Bodoor K, Carlson DA, Loiselle DR, Bera AK, Eibschutz LS, Perkins MM, Eubanks AL, Campbell PL, Fox DA, Westover KD, Haystead TAJ, Derbyshire ER (2017) Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease. Cell Chem Biol 24(8):1029-1039.e1027. https://doi.org/10.1016/j.chembiol.2017.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Francini CM, Fallacara AL, Artusi R, Mennuni L, Calgani A, Angelucci A, Schenone S, Botta M (2015) Identification of aminoimidazole and aminothiazole derivatives as Src family kinase inhibitors. ChemMedChem 10(12):2027–2041. https://doi.org/10.1002/cmdc.201500428

    Article  CAS  PubMed  Google Scholar 

  100. Nagler A, Vredevoogd DW, Alon M, Cheng PF, Trabish S, Kalaora S, Arafeh R, Goldin V, Levesque MP, Peeper DS, Samuels Y (2020) A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma. Pigment Cell Melanoma Res 33(2):334–344. https://doi.org/10.1111/pcmr.12825

    Article  CAS  PubMed  Google Scholar 

  101. Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, Budillon A, Abbruzzese JL, Chiao PJ (2011) Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 103(15):1190–1204. https://doi.org/10.1093/jnci/djr243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xi F, Liu Y, Wang X, Kong W, Zhao F (2016) LYATK1 potently inhibits LPS-mediated pro-inflammatory response. Biochem Biophys Res Commun 470(1):1–8. https://doi.org/10.1016/j.bbrc.2015.11.090

    Article  CAS  PubMed  Google Scholar 

  103. Zhou J, Zheng B, Ji J, Shen F, Min H, Liu B, Wu J, Zhang S (2015) LYTAK1, a novel TAK1 inhibitor, suppresses KRAS mutant colorectal cancer cell growth in vitro and in vivo. Tumour Biol 36(5):3301–3308. https://doi.org/10.1007/s13277-014-2961-2

    Article  CAS  PubMed  Google Scholar 

  104. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, Gan S, Sun S (2016) LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelialmesenchymal transition in retinal pigment epithelium cells. Mol Med Rep 14(1):145–150. https://doi.org/10.3892/mmr.2016.5275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen Z, Ni N, Mei Y, Yang Z (2017) LYTAK1 attenuates proliferation of retinal pigment epithelial cells through TGF-beta-mediated epithelial-mesenchymal transition via the ERK/AKT signaling pathway. Exp Ther Med 14(5):4951–4957. https://doi.org/10.3892/etm.2017.5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol 71(6):1703–1714. https://doi.org/10.1124/mol.107.034512

    Article  CAS  PubMed  Google Scholar 

  107. Ahn KS, Sethi G, Krishnan K, Aggarwal BB (2007) Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J Biol Chem 282(1):809–820. https://doi.org/10.1074/jbc.M610028200

    Article  CAS  PubMed  Google Scholar 

  108. Meng Z, Si CY, Teng S, Yu XH, Li HY (2019) Tanshinone IIA inhibits lipopolysaccharideinduced inflammatory responses through the TLR4/TAK1/NFkappaB signaling pathway in vascular smooth muscle cells. Int J Mol Med 43(4):1847–1858. https://doi.org/10.3892/ijmm.2019.4100

    Article  CAS  PubMed  Google Scholar 

  109. Wang H, Chen Z, Li Y, Ji Q (2018) NG25, an inhibitor of transforming growth factor-β-activated kinase 1, ameliorates neuronal apoptosis in neonatal hypoxic-ischemic rats. Mol Med Rep 17(1):1710–1716

    CAS  PubMed  Google Scholar 

  110. Harikumar KB, Sung B, Tharakan ST, Pandey MK, Joy B, Guha S, Krishnan S, Aggarwal BB (2010) Sesamin manifests chemopreventive effects through the suppression of NF-kappa B-regulated cell survival, proliferation, invasion, and angiogenic gene products. MCR 8(5):751–761. https://doi.org/10.1158/1541-7786.mcr-09-0565

    Article  CAS  PubMed  Google Scholar 

  111. Sethi G, Ahn KS, Sung B, Aggarwal BB (2008) Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther 7(6):1604–1614. https://doi.org/10.1158/1535-7163.mct-07-2424

    Article  CAS  PubMed  Google Scholar 

  112. Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway. Blood 110(10):3517–3525. https://doi.org/10.1182/blood-2007-03-079616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 109(7):2727–2735. https://doi.org/10.1182/blood-2006-10-050807

    Article  CAS  PubMed  Google Scholar 

  114. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355. https://doi.org/10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  115. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  116. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jiang L, Yu L, Zhang X, Lei F, Wang L, Liu X, Wu S, Zhu J, Wu G, Cao L, Liu A, Song L, Li J (2016) miR-892b silencing activates NF-kappaB and promotes aggressiveness in breast cancer. Can Res 76(5):1101–1111. https://doi.org/10.1158/0008-5472.can-15-1770

    Article  CAS  Google Scholar 

  118. Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM (2014) MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer 13:35. https://doi.org/10.1186/1476-4598-13-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang FT, Peng JF, Cheng WJ, Zhuang YY, Wang LY, Li CQ, Tang J, Chen WY, Li YH, Zhang SN (2017) MiR-143 Targeting TAK1 attenuates pancreatic ductal adenocarcinoma progression via MAPK and NF-kappaB pathway in vitro. Dig Dis Sci 62(4):944–957. https://doi.org/10.1007/s10620-017-4472-7

    Article  CAS  PubMed  Google Scholar 

  120. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF (2010) MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 107(30):13450–13455. https://doi.org/10.1073/pnas.1002120107

    Article  PubMed  PubMed Central  Google Scholar 

  121. Barrangou R (2015) The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32:36–41. https://doi.org/10.1016/j.coi.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  122. Zhang F, Wen Y, Guo X (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23(R1):R40-46. https://doi.org/10.1093/hmg/ddu125

    Article  CAS  PubMed  Google Scholar 

  123. Ma Y, Zhang L, Huang X (2014) Genome modification by CRISPR/Cas9. FEBS J 281(23):5186–5193. https://doi.org/10.1111/febs.13110

    Article  CAS  PubMed  Google Scholar 

  124. Li J, Liang C, Zhang ZK, Pan X, Peng S, Lee WS, Lu A, Lin Z, Zhang G, Leung WN, Zhang BT (2017) TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 3:17023. https://doi.org/10.1038/celldisc.2017.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D’Amore PA, Lei H (2017) Genome editing abrogates angiogenesis in vivo. Nat Commun 8(1):112. https://doi.org/10.1038/s41467-017-00140-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lu T, Zhang L, Zhu W, Zhang Y, Zhang S, Wu B, Deng N (2020) CRISPR/Cas9-mediated OC-2 editing inhibits the tumor growth and angiogenesis of ovarian cancer. Front Oncol 10:1529. https://doi.org/10.3389/fonc.2020.01529

    Article  PubMed  PubMed Central  Google Scholar 

  127. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, Tian L, Gonzalez VE, Xu J, Jung IY, Melenhorst JJ, Plesa G, Shea J, Matlawski T, Cervini A, Gaymon AL, Desjardins S, Lamontagne A, Salas-Mckee J, Fesnak A, Siegel DL, Levine BL, Jadlowsky JK, Young RM, Chew A, Hwang WT, Hexner EO, Carreno BM, Nobles CL, Bushman FD, Parker KR, Qi Y, Satpathy AT, Chang HY, Zhao Y, Lacey SF, June CH (2020) CRISPR-engineered T cells in patients with refractory cancer. Science. https://doi.org/10.1126/science.aba7365

    Article  PubMed  Google Scholar 

  128. Inokuchi S, Aoyama T, Miura K, Österreicher CH, Kodama Y, Miyai K, Akira S, Brenner DA, Seki E (2010) Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci 107(2):844–849

    Article  CAS  PubMed  Google Scholar 

  129. Roh YS, Song J, Seki E (2014) TAK1 regulates hepatic cell survival and carcinogenesis. J Gastroenterol 49(2):185–194. https://doi.org/10.1007/s00535-013-0931-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li J, Liang C, Zhang Z-K, Pan X, Peng S, Lee W-S, Lu A, Lin Z, Zhang G, Leung W-N (2017) TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 3(1):1–21

    Google Scholar 

  131. Fan Y, Cheng J, Vasudevan SA, Patel RH, Liang L, Xu X, Zhao Y, Jia W, Lu F, Zhang H (2013) TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy. Apoptosis 18(10):1224–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dvashi Z, Green Y, Pollack A (2014) TAK1 inhibition accelerates cellular senescence of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 55(9):5679–5686

    Article  CAS  PubMed  Google Scholar 

  133. Scarneo SA, Eibschutz LS, Bendele PJ, Yang KW, Totzke J, Hughes P, Fox DA, Haystead TA (2019) Pharmacological inhibition of TAK1, with the selective inhibitor takinib, alleviates clinical manifestation of arthritis in CIA mice. Arthritis Res Ther 21(1):1–10

    Article  Google Scholar 

  134. Podder B, Guttà C, Rožanc J, Gerlach E, Feoktistova M, Panayotova-Dimitrova D, Alexopoulos LG, Leverkus M, Rehm M (2019) TAK1 suppresses RIPK1-dependent cell death and is associated with disease progression in melanoma. Cell Death Differ 26(12):2520–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jones DS, Jenney AP, Swantek JL, Burke JM, Lauffenburger DA, Sorger PK (2017) Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast activation. Nat Chem Biol 13(1):38–45

    Article  CAS  PubMed  Google Scholar 

  136. Acuña UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, de Blanco EJC (2012) Effects of (5Z)-7-oxozeaenol on MDA-MB-231 breast cancer cells. Anticancer Res 32(7):2415–2421

    PubMed  PubMed Central  Google Scholar 

  137. Wu J, Powell F, Larsen NA, Lai Z, Byth KF, Read J, Gu R-F, Roth M, Toader D, Saeh JC (2013) Mechanism and in vitro pharmacology of TAK1 inhibition by (5 Z)-7-oxozeaenol. ACS Chem Biol 8(3):643–650

    Article  CAS  PubMed  Google Scholar 

  138. Wang Z, Zhang H, Shi M, Yu Y, Wang H, Cao W-M, Zhao Y, Zhang H (2016) TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells. Sci Rep 6(1):1–10

    Article  Google Scholar 

  139. Ma Q, Gu L, Liao S, Zheng Y, Zhang S, Cao Y, Zhang J, Wang Y (2019) NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivo. Apoptosis 24(1):83–94. https://doi.org/10.1007/s10495-018-1498-z

    Article  PubMed  Google Scholar 

  140. Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C, Budillon A, Abbruzzese JL, Chiao PJ (2011) Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. JNCI 103(15):1190–1204. https://doi.org/10.1093/jnci/djr243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhou J, Zheng B, Ji J, Shen F, Min H, Liu B, Wu J, Zhang S (2015) LYTAK1, a novel TAK1 inhibitor, suppresses KRAS mutant colorectal cancer cell growth in vitro and in vivo. Tumor Biol 36(5):3301–3308

    Article  CAS  Google Scholar 

  142. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, Gan S, Sun S (2016) LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial-mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep 14(1):145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang H-f, Zhang H-b, Wu X-p, Guo Y-l, Cheng W-d, Qian F (2020) Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin 41(10):1348–1356. https://doi.org/10.1038/s41401-020-0462-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-κB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IκBα kinase activation. Mol Pharmacol 71(6):1703–1714

    Article  CAS  PubMed  Google Scholar 

  145. Yang C, Jiang Q (2019) Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. J Nutr Biochem 64:101–109

    Article  CAS  PubMed  Google Scholar 

  146. Meng Z, Si CY, Teng S, Yu XH, Li HY (2019) Tanshinone IIA inhibits lipopolysaccharide-induced inflammatory responses through the TLR4/TAK1/NF-κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 43(4):1847–1858

    CAS  PubMed  Google Scholar 

  147. Wang Z, Zhao S, Song L, Pu Y, Wang Q, Zeng G, Liu X, Bai M, Li S, Gao F (2018) Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1. Cell Death Dis 9(7):1–16

    Google Scholar 

  148. Harikumar KB, Sung B, Tharakan ST, Pandey MK, Joy B, Guha S, Krishnan S, Aggarwal BB (2010) Sesamin manifests chemopreventive effects through the suppression of NF-κB-regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol Cancer Res 8(5):751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sethi G, Ahn KS, Sung B, Aggarwal BB (2008) Pinitol targets nuclear factor-κB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther 7(6):1604–1614

    Article  CAS  PubMed  Google Scholar 

  150. Pandey MK, Sung B, Ahn KS, Kunnumakkara AB, Chaturvedi MM, Aggarwal BB (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-κB signaling pathway. Blood 110(10):3517–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sethi G, Ahn KS, Pandey MK, Aggarwal BB (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-κB-regulated gene products and TAK1-mediated NF-κB activation. Blood 109(7):2727–2735

    Article  CAS  PubMed  Google Scholar 

  152. Lee H-W, Jang KSB, Choi HJ, Jo A, Cheong J-H, Chun K-H (2014) Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy. BMB Rep 47(12):697

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms Jessika Hernandez Garcia for assistance with figure illustrations. This work was supported by grants from the National Health and Medical Research Council of Australia (1185600) and the National Natural Science Foundation of China (82000902). The Centre for Eye Research Australia receives Operational Infrastructure Support from the Victorian Government.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization- LZ, SL, J-HW, G-SL Writing (Original Draft)- LZ, SL, J-HW, G-SL Writing (Review & Editing)- LT, GJD Project Administration- J-HW, G-SL Funding Acquisition- LT, G-SL Project Supervision- G-SL.

Corresponding author

Correspondence to Guei-Sheung Liu.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Lama, S., Tu, L. et al. TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis 24, 453–470 (2021). https://doi.org/10.1007/s10456-021-09787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-021-09787-5

Keywords

Navigation