Skip to main content
Log in

Image denoising in the deep learning era

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Over the last decade, the number of digital images captured per day has increased exponentially, due to the accessibility of imaging devices. The visual quality of photographs captured by low cost or miniaturized imaging devices is often degraded by noise during image acquisition and data transmission. With the re-emergence of deep neural networks, the performance of image denoising techniques has been substantially improved in recent years. The objective of this paper is to provide a comprehensive survey of recent advances in image denoising techniques based on deep neural networks. We begin with a thorough description of the fundamental preliminaries of the image denoising problem, followed by an overview of the benchmark datasets and commonly used metrics for objective assessment of denoising algorithms. We study the existing deep denoisers in the supervised and unsupervised training paradigms and review the technical specifics of some representative methods within each category. We conclude the survey by remarking on trends and challenges in the development of state-of-the-art algorithms and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. independent and identically distributed

References

  • Abdelhamed A, Lin S, Brown MS (2018) A high-quality denoising dataset for smartphone cameras. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Abdelhamed A, Brubaker MA, Brown MS (2019) Noise flow: Noise modeling with conditional normalizing flows. In: IEEE International Conference on Computer Vision (ICCV), pp. 3165–3173. IEEE

  • Aetesam H, Maji SK (2021) Noise dependent training for deep parallel ensemble denoising in magnetic resonance images. Biomed Signal Process Control 66:102405

    Google Scholar 

  • Agostinelli F, Anderson MR, Lee H (2013) Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in neural information processing systems (NeurIPS), pp 1493–1501. Curran Associates, Inc

  • Agustsson E, Timofte R (2017) Ntire 2017 challenge on single image super-resolution: Dataset and study. In: CVPR Workshop. IEEE

  • Anaya J, Barbu A (2018) Renoir—a dataset for real low-light image noise reduction. J Vis Commun Image Represent 51:144–154

    Google Scholar 

  • Anwar S, Barnes N (2019) Real image denoising with feature attention. In: IEEE International Conference on Computer Vision (ICCV), pp. 3155–3164. IEEE

  • Bae W, Yoo J, Chul Ye J (2017) Beyond deep residual learning for image restoration: persistent homology-guided manifold simplification. In: IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 145–153. IEEE

  • Bai B, Bading J, Conti PS (2013) Tumor quantification in clinical positron emission tomography. Theranostics 3(10):787

    Google Scholar 

  • Batson J, Royer L (2019) Noise2Self: Blind denoising by self-supervision. In: International Conference on Machine Learning (ICML), vol. 97, pp. 524–533. PMLR

  • Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process (TIP) 18(11):2419–2434 (IEEE)

    MathSciNet  MATH  Google Scholar 

  • Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Bevilacqua M, et al (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: British Machine vision conference, pp 135–113510. BMVA press

  • Bhat G, Danelljan M, Yu F, Van Gool L, Timofte R (2021) Deep reparametrization of multi-frame super-resolution and denoising. In: IEEE Conference on Computer Vision (ICCV), pp. 2460–2470. IEEE

  • Blau Y et al (2018) The 2018 pirm challenge on perceptual image super-resolution. In: European conference on computer vision workshops (ECCVW). Springer

  • Brenner DJ, Hall EJ (2007) Computed tomography-an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284 (Mass Medical Soc)

    Google Scholar 

  • Brooks T et al (2019) Unprocessing images for learned raw denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Brummer B, De Vleeschouwer C (2019) Natural image noise dataset. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Buades A, Coll B, Morel J (2005) A non-local algorithm for image denoising. In: IEEE conference on computer vision and pattern recognition (CVPR), vol 2, pp 60–652. IEEE

  • Burger HC, Schuler CJ, Harmeling S (2012) Image denoising: can plain neural networks compete with bm3d? In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Byun J, Cha S, Moon T (2021) Fbi-denoiser: Fast blind image denoiser for poisson-gaussian noise. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5768–5777. IEEE

  • Cammarasana S, Nicolardi P, Patanè G (2021) A universal deep learning framework for real-time denoising of ultrasound images. arXiv:2101.09122

  • Cha S, Moon T (2018) Neural adaptive image denoiser. In: ICASSP. IEEE

  • Cha S, Moon T (2019) Fully convolutional pixel adaptive image denoiser. In: IEEE International Conference on Computer Vision (ICCV). IEEE

  • Chang K-C, Wang R, Lin H-J, Liu Y-L, Chen C-P, Chang Y-L, Chen H-T (2020) Learning camera-aware noise models. In: European Conference on Computer Vision (ECCV), pp. 343–358. Springer

  • Chang M, Li Q, Feng H, Xu Z (2020) Spatial-adaptive network for single image denoising. In: European Conference on Computer Vision (ECCV), pp. 171–187. Springer

  • Chaudhari S, Polatkan G, Ramanath R, Mithal V (2019) An attentive survey of attention models. arXiv:1904.02874

  • Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell (PAMI) 39(6):1256–1272

    Google Scholar 

  • Chen Y, Wei Yu, Pock T (2015) On learning optimized reaction diffusion processes for effective image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5261–5269. IEEE

  • Chen C et al (2018) Deep boosting for image denoising. In: Computer Vision – ECCV 2018, pp. 3–19. Springer

  • Chen C et al (2019) Real-world image denoising with deep boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1. IEEE

  • Chen X, Song L, Yang X (2016) Deep RNNS for video denoising. Appl Digit Image Process 9971:99711

    Google Scholar 

  • Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017a) Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694

    Google Scholar 

  • Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017b) Low-dose CT with a residual encoder–decoder convolutional neural network. IEEE Trans Med Imaging (TMI) 36(12):2524–2535

    Google Scholar 

  • Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial network based noise modeling. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Chen C, Chen Q, Xu J, Koltun V (2018) Learning to see in the dark. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3291–3300. IEEE

  • Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E et al (2019) Ultra-low-dose 18F-florbetaben amyloid pet imaging using deep learning with multi-contrast MRI inputs. Radiology 290(3):649–656

    Google Scholar 

  • Chen C, Chen Q, Do MN, Koltun V (2019) Seeing motion in the dark. In: IEEE International Conference on Computer Vision (ICCV), pp. 3185–3194. IEEE

  • Chen Y-C, Gao C, Robb E, Huang J-B (2020) Nas-dip: Learning deep image prior with neural architecture search. In: European Conference on Computer Vision (ECCV), pp. 442–459. Springer

  • Chen R, Mihaylova L, Zhu H, Bouaynaya NC (2020) A deep learning framework for joint image restoration and recognition. Circ Syst Signal Process 39(3):1561–1580

    Google Scholar 

  • Chen K, Long K, Ren Y, Sun J, Pu X (2021) Lesion-inspired denoising network: Connecting medical image denoising and lesion detection. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3283–3292

  • Cheng S, Wang Y, Huang H, Liu D, Fan H, Liu S (2021) Nbnet: Noise basis learning for image denoising with subspace projection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4896–4906. IEEE

  • Choi JH, Elgendy OA, Chan SH (2019) Optimal combination of image denoisers. IEEE Trans Image Process (TIP) 28(8):4016–4031

    MathSciNet  MATH  Google Scholar 

  • Claus M, van Gemert J (2019) Videnn: Deep blind video denoising. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE

  • Clevert D-A, Unterthiner T, Hochreiter S (2016) Fast and accurate deep network learning by exponential linear units (elus)

  • Clevert D-A, Unterthiner T, Hochreiter S (2016) Fast and accurate deep network learning by exponential linear units (elus). In: International conference on learning representations (ICLR)

  • Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B et al (2019) Pet image denoising using unsupervised deep learning. Eur J Nucl Med Mol Imaging 46(13):2780–2789

    Google Scholar 

  • Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process (TIP) 16(8):2080–2095

    MathSciNet  Google Scholar 

  • Dewil V, Anger J, Davy A, Ehret T, Facciolo G, Arias P (2021) Self-supervised training for blind multi-frame video denoising. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2724–2734. IEEE

  • Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, Gropler RJ, Knuuti J, Schelbert HR, Travin MI (2016) ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 23(5):1187–1226

    Google Scholar 

  • Dinh L, Krueger D, Bengio Y (2014) Nice: non-linear independent components estimation. arXiv:1410.8516

  • Efron B (2011) Tweedie’s formula and selection bias. J Am Stat Assoc 106(496):1602–1614

    MathSciNet  MATH  Google Scholar 

  • Ehret T et al (2019) Joint demosaicking and denoising by fine-tuning of bursts of raw images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Ehret T, Davy A, Morel J-M, Facciolo G, Arias P (2019) Model-blind video denoising via frame-to-frame training. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11369–11378. IEEE

  • Foi A, Trimeche M, Katkovnik V, Egiazarian K (2008) Practical Poissonian–Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans Image Process (TIP) 17(10):1737–1754

    MathSciNet  MATH  Google Scholar 

  • Fujimoto A et al (2016) Manga109 dataset and creation of metadata. In: International Workshop on coMics ANalysis, Processing and Understanding, pp 2–125

  • Godard C et al (2018) Deep burst denoising. In: European Conference on Computer Vision (ECCV), pp. 560–577. Springer

  • Goncharova AS, Honigmann A, Jug F, Krull A (2020) Improving blind spot denoising for microscopy. In: European Conference on Computer Vision (ECCV), pp. 380–393. Springer

  • Gong K, Guan J, Liu C-C, Qi J (2018) Pet image denoising using a deep neural network through fine tuning. IEEE Trans Radiat Plasma Med Sci 3(2):153–161

    Google Scholar 

  • Gong Y, Shan H, Teng Y, Tu N, Li M, Liang G, Wang G, Wang S (2020) Parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose pet image denoising. IEEE Trans Radiat Plasma Med Sci 5(2):213–223

    Google Scholar 

  • Goodfellow I et al (2014) Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2672–2680. Curran Associates, Inc

  • Goyal B, Agrawal S, Sohi B (2018) Noise issues prevailing in various types of medical images. Biomed Pharmacol J 11(3):1227

    Google Scholar 

  • Graham MS, Drobnjak I, Zhang H (2016) Realistic simulation of artefacts in diffusion MRI for validating post-processing correction techniques. Neuroimage 125:1079–1094

    Google Scholar 

  • Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2862–2869. IEEE

  • Gu S et al (2019) Self-guided network for fast image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Gu S, Li W, Gool LV, Timofte R (2019) Fast image restoration with multi-bin trainable linear units. In: IEEE International Conference on Computer Vision (ICCV). IEEE

  • Guo S et al (2019) Toward convolutional blind denoising of real photographs. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Guo L, Zha Z, Ravishankar S, Wen B (2021) Self-convolution: A highly-efficient operator for non-local image restoration. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1860–1864. IEEE

  • Hasan AM, Mohebbian MR, Wahid KA, Babyn P (2020) Hybrid-collaborative noise2noise denoiser for low-dose CT images. IEEE Trans Radiat Plasma Med Sci 5(2):235–244 (IEEE)

    Google Scholar 

  • Hasinoff SW (2014) Photon, Poisson noise

  • Hasinoff SW, Sharlet D, Geiss R, Adams A, Barron JT, Kainz F, Chen J, Levoy M (2016) Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans Graph (ToG) 35(6):1–12

    Google Scholar 

  • Hel-Or Y, Shaked D (2008) A discriminative approach for wavelet denoising. IEEE Trans Image Process (TIP) 17(4):443–457

    MathSciNet  Google Scholar 

  • Hendriksen AA, Pelt DM, Batenburg KJ (2020) Noise2inverse: self-supervised deep convolutional denoising for tomography. IEEE Trans Comput Imaging 6:1320–1335

    MathSciNet  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778. IEEE

  • Herholz K, Heiss W-D (2004) Positron emission tomography in clinical neurology. Mol Imaging Biol 6(4):239–269

    Google Scholar 

  • Hu J et al (2018b) Gather-excite: Exploiting feature context in convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 9401–9411. Curran Associates, Inc

  • Huang J-B, Singh A, Ahuja N (2015) Single image super-resolution from transformed self-exemplars. In: IEEE international conference on computer vision and pattern recognition (CVPR). IEEE

  • Huang G, Liu Z, v. d. Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE

  • Huang T, Li S, Jia X, Lu H, Liu J (2021) Neighbor2neighbor: Self-supervised denoising from single noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14781–14790. IEEE

  • Huang Z, Zhao R, Leung FHF, Banerjee S, Lee TT-Y, Yang D, Lun DPK, Lam K-M, Zheng Y-P, Ling SH (2022) Joint spine segmentation and noise removal from ultrasound volume projection images with selective feature sharing. IEEE Trans Med Imaging 41(7):1610–1624. https://doi.org/10.1109/TMI.2022.3143953

    Article  Google Scholar 

  • Huang Q, Zhou Y, Liu H-F, Bartesaghi A (2022) Weakly supervised learning for joint image denoising and protein localization in cryo-electron microscopy. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3246–3255

  • Hu J, Shen L, Sun G (2018a) Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141. IEEE

  • Hu X, Ma R, Liu Z, Cai Y, Zhao X, Zhang Y, Wang H (2021) Pseudo 3d auto-correlation network for real image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16175–16184. IEEE

  • Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning (ICML), vol 37, pp 448–456. PMLR

  • Izadi S, Hamarneh G (2020) Patch-based non-local bayesian networks for blind confocal microscopy denoising. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 46–55. Springer

  • Izadi S et al (2019) Whitenner-blind image denoising via noise whiteness priors. In: IEEE International Conference on Computer Vision Workshops (ICCVW). IEEE

  • Izadi S, Mirikharaji Z, Zhao M, Hamarneh G (2019) Whitenner-blind image denoising via noise whiteness priors. In: IEEE International Conference on Computer Vision Workshops (ICCVW). IEEE

  • Jabbar A, Li X, Omar B (2021) A survey on generative adversarial networks: variants, applications, and training. ACM Comput Surv (CSUR) 54(8):1–49

    Google Scholar 

  • Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial transformer networks. Adv Neural Inf Process Syst (NeurIPS) 28:2017–2025

    Google Scholar 

  • Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Advances in neural information processing systems (NeurIPS). Curran Associates, Inc pp 769–776

  • Jang G, Lee W, Son S, Lee KM (2021) C2n: Practical generative noise modeling for real-world denoising. In: IEEE Conference on Computer Vision (ICCV), pp. 2350–2359. IEEE

  • Jaroensri R, Biscarrat C, Aittala M, Durand F (2019) Generating training data for denoising real rgb images via camera pipeline simulation. arXiv:1904.08825

  • Jiang D, Dou W, Vosters L, Xu X, Sun Y, Tan T (2018) Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn J Radiol 36(9):566–574

    Google Scholar 

  • Jiao J, Tu W-C, He S, Lau RW (2017) Formresnet: formatted residual learning for image restoration. In: IEEE conference on computer vision and pattern recognition workshops (CVPRW), pp 38–46. IEEE

  • Jo Y, Chun SY, Choi J (2021) Rethinking deep image prior for denoising. In: IEEE Conference on Computer Vision (ICCV), pp. 5087–5096. IEEE

  • Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision (ECCV), pp. 694–711. Springer

  • Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 44(10):360–375

    Google Scholar 

  • Karaoğlu O, Bilge HŞ, Uluer İ (2021) Removal of speckle noises from ultrasound images using five different deep learning networks. Eng Sci Technol 29:101030

    Google Scholar 

  • Khademi W, Rao S, Minnerath C, Hagen G, Ventura J (2021) Self-supervised poisson-gaussian denoising. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2131–2139. IEEE

  • Kim K, Ye JC (2021) Noise2score: tweedie’s approach to self-supervised image denoising without clean images. Advances in Neural Information Processing Systems (NeurIPS) 34, 864–874. Curran Associates, Inc

  • Kim Y, Jung H, Min D, Sohn K (2017) Deeply aggregated alternating minimization for image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6419–6427. IEEE

  • Kim D-W, Ryun Chung J, Jung S-W (2019) Grdn:grouped residual dense network for real image denoising and gan-based real-world noise modeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Kim Y, Soh JW, Park GY, Cho NI (2020) Transfer learning from synthetic to real-noise denoising with adaptive instance normalization. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3482–3492. IEEE

  • Kingma DP, Dhariwal P (2018) Glow: Generative flow with invertible 1x1 convolutions. In: Advances in Neural Information Processing Systems (NeurIPS) 31, pp. 10215–10224. Curran Associates, Inc

  • Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 972–981. Curran Associates, Inc

  • Kligvasser I, Shaham TR, Michaeli T (2018) xunit: Learning a spatial activation function for efficient image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2433–2442. IEEE

  • Kodak24. http://r0k.us/graphics/kodak/

  • Kokkinos F, Lefkimmiatis S (2019) Iterative joint image demosaicking and denoising using a residual denoising network. IEEE Trans Image Process (TIP) 28(8):4177–4188

    MathSciNet  MATH  Google Scholar 

  • Konnik M, Welsh J (2014) High-level numerical simulations of noise in CCD and CMOS photosensors: review and tutorial. arXiv:1412.4031

  • Krizhevsky A et al (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems (NeurIPS), pp 1097–1105. Curran Associates, Inc

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst (NeurIPS) 25:1097–1105

    Google Scholar 

  • Krull A, Buchholz T-O, Jug F (2019) Noise2void - learning denoising from single noisy images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Krull A, Vičar T, Prakash M, Lalit M, Jug F (2020) Probabilistic noise2void: unsupervised content-aware denoising. Front Comput Sci 2:5. https://doi.org/10.3389/fcomp.2020.00005

    Article  Google Scholar 

  • Laine S et al (2019) High-quality self-supervised deep image denoising. In: Advances in Neural Information Processing Systems (NeurIPS) 32, pp. 6968–6978. Curran Associates, Inc

  • Lan X et al (2006) Efficient belief propagation with learned higher-order Markov random fields. In: European conference on computer vision (ECCV). Springer pp 269–282

  • Lan Y, Zhang X (2020) Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNET. IEEE Access 8:195327–195340

    Google Scholar 

  • Lebrun M, Colom M, Morel J-M (2015) The noise clinic: a blind image denoising algorithm. Image Process Line 5:1–54

    MATH  Google Scholar 

  • Lee S, Cho D, Kim J, Kim TH (2020) Self-supervised fast adaptation for denoising via meta-learning. arXiv:2001.02899

  • Lee S, Cho D, Kim J, Kim TH (2021) Restore from restored: Video restoration with pseudo clean video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3537–3546. IEEE

  • Lefkimmiatis S (2017) Non-local color image denoising with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Lefkimmiatis S (2018) Universal denoising networks : A novel cnn architecture for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Lehtinen J et al (2018) Noise2Noise: Learning image restoration without clean data. In: Dy, J., Krause, A. (eds.) International Conference on Machine Learning (ICML), vol. 80, pp. 2965–2974. PMLR

  • Lemarchand F, Montesuma EF, Pelcat M, Nogues E (2020) Opendenoising: an extensible benchmark for building comparative studies of image denoisers. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2648–2652

  • Lequyer J, Philip R, Sharma A, Pelletier L (2021) Noise2fast: fast self-supervised single image blind denoising. arXiv:2108.10209

  • Leyris C, Hoffmann A, Valenza M, Vildeuil J-C, Roy F (2005) Trap competition inducing rts noise in saturation range in n-mosfets. In: Noise in devices and circuits III, vol 5844, pp 41–51. International Society for Optics and Photonics

  • Li C, Xu K, Zhu J, Zhang B (2017) Triple generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 4091–4101. Curran Associates, Inc

  • Li M, Hsu W, Xie X, Cong J, Gao W (2020) Sacnn: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans Med Imaging (TMI) 39(7):2289–2301

    Google Scholar 

  • Li Z, Zhou S, Huang J, Yu L, Jin M (2020) Investigation of low-dose CT image denoising using unpaired deep learning methods. IEEE Trans Radiat Plasma Med Sci 5(2):224–234

    Google Scholar 

  • Li Y, Fu X, Zha Z-J (2021) Cross-patch graph convolutional network for image denoising. In: IEEE Conference on Computer Vision (ICCV), pp. 4651–4660. IEEE

  • Liang Z, Guo S, Gu H, Zhang H, Zhang L (2020) A decoupled learning scheme for real-world burst denoising from raw images. In: European Conference on Computer Vision (ECCV), pp. 150–166. Springer

  • Lin K, Li TH, Liu S, Li G (2019) Real photographs denoising with noise domain adaptation and attentive generative adversarial network. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE

  • Liu C, Szeliski R, Bing Kang S, Zitnick CL, Freeman WT (2008) Automatic estimation and removal of noise from a single image. IEEE Trans Pattern Anal Mach Intell (PAMI) 30(2):299–314 (IEEE)

    Google Scholar 

  • Liu D et al (2018) Non-local recurrent network for image restoration. In: Advances in neural information processing systems (NeurIPS), pp 1673–1682. Curran Associates, Inc

  • Liu S, Wang Y, Yang X, Lei B, Liu L, Li SX, Ni D, Wang T (2019) Deep learning in medical ultrasound analysis: a review. Engineering 5(2):261–275

    Google Scholar 

  • Liu X, Suganuma M, Sun Z, Okatani T (2019) Dual residual networks leveraging the potential of paired operations for image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 7007–7016. IEEE

  • Liu J, Sun Y, Xu X, Kamilov US (2019) Image restoration using total variation regularized deep image prior. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7715–7719. IEEE

  • Liu J, Wu C-H, Wang Y, Xu Q, Zhou Y, Huang H, Wang C, Cai S, Ding Y, Fan H et al (2019) Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE

  • Liu D, Wen B, Jiao J, Liu X, Wang Z, Huang TS (2020) Connecting image denoising and high-level vision tasks via deep learning. IEEE Trans Image Process (TIP) 29:3695–3706

    MATH  Google Scholar 

  • Liu L, Jia X, Liu J, Tian Q (2020) Joint demosaicing and denoising with self guidance. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2240–2249. IEEE

  • Liu Y, Qin Z, Anwar S, Ji P, Kim D, Caldwell S, Gedeon T (2021) Invertible denoising network: A light solution for real noise removal. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13365–13374. IEEE

  • Maggioni M, Huang Y, Li C, Xiao S, Fu Z, Song F (2021) Efficient multi-stage video denoising with recurrent spatio-temporal fusion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3466–3475. IEEE

  • Mairal J et al (2009) Non-local sparse models for image restoration. In: IEEE international conference on computer vision (ICCV). IEEE

  • Mao X, Shen C, Yang Y-B (2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in neural information processing systems (NeurIPS). Curran Associates, Inc

  • Marinč T, Srinivasan V, Gül S, Hellge C, Samek W (2019) Multi-kernel prediction networks for denoising of burst images. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2404–2408. IEEE

  • Marras I, Chrysos GG, Alexiou I, Slabaugh G, Zafeiriou S (2020) Reconstructing the noise manifold for image denoising. arXiv:2002.04147

  • Martin D et al (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: IEEE international conference on computer vision (ICCV). IEEE

  • Mataev G, Milanfar P, Elad M (2019) Deepred: Deep image prior powered by red. In: CVPR Workshops. IEEE

  • Meinhardt T, Moller M, Hazirbas C, Cremers D (2017) Learning proximal operators: Using denoising networks for regularizing inverse imaging problems. In: IEEE international conference on computer vision (ICCV), pp 1781–1790. IEEE

  • Mildenhall B, Barron JT, Chen J, Sharlet D, Ng R, Carroll R (2018) Burst denoising with kernel prediction networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Misra D (2019) Mish: a self regularized non-monotonic neural activation function. arXiv:1908.08681

  • Moran N, Schmidt D, Zhong Y, Coady P (2020) Noisier2noise: Learning to denoise from unpaired noisy data. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12064–12072. IEEE

  • Moseley B, Bickel V, Lopez-Francos IG, Rana L (2021) Extreme low-light environment-driven image denoising over permanently shadowed lunar regions with a physical noise model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6317–6327. IEEE

  • Mou C, Zhang J (2021) Graph attention neural network for image restoration. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE

  • Mou C, Zhang J, Wu Z (2021) Dynamic attentive graph learning for image restoration. In: IEEE Conference on Computer Vision (ICCV), pp. 4328–4337. IEEE

  • Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: International conference on machine learning (ICML), pp 807–814. PMLR

  • Nam S et al (2016) A holistic approach to cross-channel image noise modeling and its application to image denoising. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Nguyen MP, Chun SY (2017) Bounded self-weights estimation method for non-local means image denoising using minimax estimators. IEEE Trans Image Process (TIP) 26(4):1637–1649

    MathSciNet  MATH  Google Scholar 

  • Nievelstein R, van Ufford HQ, Kwee T, Bierings M, Ludwig I, Beek F, de Klerk J, Mali WTM, de Bruin P, Geleijns J (2012) Radiation exposure and mortality risk from CT and pet imaging of patients with malignant lymphoma. Eur Radiol 22(9):1946–1954

    Google Scholar 

  • Osher S et al (2005) An iterative regularization method for total variation-based image restoration. Multiscale Mode Simul 4(2):460–489

    MathSciNet  MATH  Google Scholar 

  • Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G (2019) Ultra-low-dose pet reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys 46(8):3555–3564

    Google Scholar 

  • Pan Z, Li B, Cheng H, Bao Y (2020) Deep residual network for msfa raw image denoising. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2413–2417. IEEE

  • Pang T, Zheng H, Quan Y, Ji H (2021) Recorrupted-to-recorrupted: unsupervised deep learning for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2043–2052. IEEE

  • Plotz T, Roth S (2017) Benchmarking denoising algorithms with real photographs. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Plötz T, Roth S (2018) Neural nearest neighbors networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1087–1098. Curran Associates, Inc

  • Pronina V, Kokkinos F, Dylov DV, Lefkimmiatis S (2020) Microscopy image restoration with deep wiener-kolmogorov filters. In: European Conference on Computer Vision (ECCV), 2020, Proceedings, Part XX 16, pp. 185–201. Springer

  • Quan Y, Chen M, Pang T, Ji H (2020) Self2self with dropout: Learning self-supervised denoising from single image. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1890–1898. IEEE

  • Ramani S, Blu T, Unser M (2008) Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans Image Process (TIP) 17(9):1540–1554

    MathSciNet  Google Scholar 

  • Ran M, Hu J, Chen Y, Chen H, Sun H, Zhou J, Zhang Y (2019) Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med Image Anal 55:165–180

    Google Scholar 

  • Remez T, Litany O, Giryes R, Bronstein AM (2018) Class-aware fully convolutional gaussian and Poisson denoising. IEEE Trans Image Process (TIP) 27(11):5707–5722 (IEEE)

    MathSciNet  MATH  Google Scholar 

  • Ren H, El-Khamy M, Lee J (2018) Dn-resnet: Efficient deep residual network for image denoising. In: Asian conference on computer vision (ACCV), pp 215–230. Springer

  • Rezende DJ, Mohamed S (2015) Variational inference with normalizing flows. In: International Conference on Machine Learning (ICML), vol. 37, pp. 1530–1538. PMLR

  • Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of pet in oncology. Radiology 231(2):305–332

    Google Scholar 

  • Romano Y, Elad M (2015) Boosting of image denoising algorithms. J Imaging Sci 8(2):1187–1219. https://doi.org/10.1137/140990978

    Article  MathSciNet  MATH  Google Scholar 

  • Romano Y, Elad M, Milanfar P (2017) The little engine that could: regularization by denoising (red). J Imaging Sci 10(4):1804–1844. https://doi.org/10.1137/16M1102884

    Article  MathSciNet  MATH  Google Scholar 

  • Rong X, Demandolx D, Matzen K, Chatterjee P, Tian Y (2020) Burst denoising via temporally shifted wavelet transforms. In: European Conference on Computer Vision (ECCV), 2020, Proceedings, Part XIII 16, pp. 240–256. Springer

  • Roth S, Black MJ (2009) Fields of experts. Int J Comput Vis (IJCV) 82(2):205

    MATH  Google Scholar 

  • Roth S, Black MJ (2009) Fields of experts. Int J Comput Vis (IJCV) 82(2):205

    MATH  Google Scholar 

  • Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1):259–268

    MathSciNet  MATH  Google Scholar 

  • Sagheer SVM, George SN (2020) A review on medical image denoising algorithms. Biomed Signal Process Control 61:102036

    Google Scholar 

  • Santhanam V, Morariu VI, Davis LS (2017) Generalized deep image to image regression. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5609–5619. IEEE

  • Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2774–2781. IEEE

  • Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823. IEEE

  • Schweiger M, Arridge SR (2014) The toast++ software suite for forward and inverse modeling in optical tomography. J Biomed Opt 19(4):040801

    Google Scholar 

  • Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, Cong W, Wang G (2018) 3-D convolutional encoder–decoder network for low-dose CT via transfer learning from a 2-d trained network. IEEE Trans Med Imaging (TMI) 37(6):1522–1534

    Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  • Soltanayev S, Chun SY (2018) Training deep learning based denoisers without ground truth data. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3257–3267. Curran Associates, Inc

  • Soltanayev S, Giryes R, Chun SY, Eldar YC (2020) On divergence approximations for unsupervised training of deep denoisers based on stein’s unbiased risk estimator. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3592–3596. IEEE

  • Song Y, Zhu Y, Du X (2019) Dynamic residual dense network for image denoising. Sensors 19(17):3809

    Google Scholar 

  • Srivastava RK, Greff K, Schmidhuber J (2015a) Training very deep networks. In: Advances in neural information processing systems (NeurIPS), pp 2377–2385. Curran Associates, Inc

  • Srivastava RK, Greff K, Schmidhuber J (2015b) Highway networks. International conference on machine learning (ICML) deep learning workshop. PMLR

  • Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(56):1929–1958

    MathSciNet  MATH  Google Scholar 

  • Stein CM (1981) Estimation of the mean of a multivariate normal distribution. Ann Stat 9:1135–1151

    MathSciNet  MATH  Google Scholar 

  • Suganuma M, Liu X, Okatani T (2019) Attention-based adaptive selection of operations for image restoration in the presence of unknown combined distortions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9

  • Tachella J, Tang J, Davies M (2021) The neural tangent link between cnn denoisers and non-local filters. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8618–8627. IEEE

  • Tai Y, Yang J, Liu X, Xu C (2017) Memnet: a persistent memory network for image restoration. In: IEEE international conference on computer vision (ICCV). IEEE

  • Talebi H, Zhu X, Milanfar P (2013) How to saif-ly boost denoising performance. IEEE Trans Image Process (TIP) 22(4):1470–1485

    MathSciNet  MATH  Google Scholar 

  • Tassano M, Delon J, Veit T (2019) Dvdnet: A fast network for deep video denoising. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1805–1809. IEEE

  • Tassano M, Delon J, Veit T (2020) Fastdvdnet: Towards real-time deep video denoising without flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1354–1363. IEEE

  • Thakur RS, Yadav RN, Gupta L (2019) State-of-art analysis of image denoising methods using convolutional neural networks. IET Image Proc 13(13):2367–2380

    Google Scholar 

  • Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin C-W (2020) Deep learning on image denoising: an overview. Neural Netw 131:251–275

    MATH  Google Scholar 

  • Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022

  • Ulyanov D, Vedaldi A, Lempitsky V (2018) Deep image prior. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE

  • Vaksman G, Elad M, Milanfar P (2021) Patch craft: Video denoising by deep modeling and patch matching. In: IEEE Conference on Computer Vision (ICCV), pp. 2157–2166. IEEE

  • Valsesia D, Fracastoro G, Magli E (2019) Image denoising with graph-convolutional neural networks. In: IEEE International Conference on Image Processing (ICIP). IEEE

  • Valsesia D, Fracastoro G, Magli E (2020) Deep graph-convolutional image denoising. IEEE Trans Image Process (TIP) 29:8226–8237

    MathSciNet  MATH  Google Scholar 

  • Van De Ville D, Kocher M (2009) Sure-based non-local means. IEEE Signal Process Lett 16(11):973–976

    Google Scholar 

  • Vaswani A et al (2017) Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 5998–6008. Curran Associates, Inc

  • Vogel CR (2002) Computational methods for inverse problems, vol 23. SIAM, Philadelphia

    MATH  Google Scholar 

  • Wang Z, Bovik AC, Lu L (2002) Why is image quality assessment so difficult? In: IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE

  • Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The Asilomar Conference on Signals, Systems Computers

  • Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. J Imaging Sci 1(3):248–272

    MathSciNet  MATH  Google Scholar 

  • Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6450–6458. IEEE

  • Wang T, Sun M, Hu K (2017) Dilated deep residual network for image denoising. In: 2017 IEEE 29th international conference on tools with artificial intelligence (ICTAI), pp 1272–1279. IEEE

  • Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic manipulation with conditional GANS. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8798–8807. IEEE

  • Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D, Zhou L (2018) 3D conditional generative adversarial networks for high-quality pet image estimation at low dose. Neuroimage 174:550–562

    Google Scholar 

  • Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7794–7803. IEEE

  • Wang W, Chen X, Yang C, Li X, Hu X, Yue T (2019) Enhancing low light videos by exploring high sensitivity camera noise. In: IEEE International Conference on Computer Vision (ICCV), pp. 4111–4119. IEEE

  • Wang F, Henninen TR, Keller D, Erni R (2020) Noise2atom: unsupervised denoising for scanning transmission electron microscopy images. Appl Microsc 50(1):1–9

    Google Scholar 

  • Wang Y, Huang H, Xu Q, Liu J, Liu Y, Wang J (2020) Practical deep raw image denoising on mobile devices. In: European Conference on Computer Vision (ECCV), pp. 1–16. Springer

  • Wei K, Fu Y, Yang J, Huang H (2020) A physics-based noise formation model for extreme low-light raw denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2758–2767. IEEE

  • Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, Wilhelm B, Schmidt D, Broaddus C, Culley S et al (2018) Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15(12):1090–1097

    Google Scholar 

  • Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging (TMI) 36(12):2536–2545

    Google Scholar 

  • Won D, Jung E, An S, Chikontwe P, Park SH (2021) Self-supervised learning based CT denoising using pseudo-CT image pairs. arXiv:2104.02326

  • Wu X, Liu M, Cao Y, Ren D, Zuo W (2020) Unpaired learning of deep image denoising. In: European Conference on Computer Vision (ECCV), pp. 352–368. Springer

  • Xia Z, Chakrabarti A (2020) Identifying recurring patterns with deep neural networks for natural image denoising. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2426–2434. IEEE

  • Xia Z, Perazzi F, Gharbi M, Sunkavalli K, Chakrabarti A (2020) Basis prediction networks for effective burst denoising with large kernels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11844–11853. IEEE

  • Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, Shen D (2017) Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose PET/MRI. Neurocomputing 267:406–416

    Google Scholar 

  • Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. In: Advances in neural information processing systems (NeurIPS), pp 341–349. Curran Associates, Inc

  • Xie Y, Wang Z, Ji S (2020) Noise2same: Optimizing a self-supervised bound for image denoising. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 20320–20330. Curran Associates, Inc

  • Xing W, Egiazarian K (2021) End-to-end learning for joint image demosaicing, denoising and super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3507–3516. IEEE

  • Xu J, Adalsteinsson E (2021) Deformed2self: Self-supervised denoising for dynamic medical imaging. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 25–35. Springer

  • Xu J et al (2018) Real-world noisy image denoising: a new benchmark. arXiv:1804.02603

  • Xu J, Huang Y, Cheng M-M, Liu L, Zhu F, Xu Z, Shao L (2020) Noisy-as-clean: learning self-supervised denoising from corrupted image. IEEE Trans Image Process (TIP) 29:9316–9329

    MATH  Google Scholar 

  • Xu J, Gong E, Pauly J, Zaharchuk G (2017) 200x low-dose pet reconstruction using deep learning. arXiv:1712.04119

  • Xu X, Li M, Sun W, Yang M-H (2020) Learning spatial and spatio-temporal pixel aggregations for image and video denoising. IEEE Transactions on Image Processing (TIP) 29, 7153–7165. IEEE

  • Xue T, Chen B, Wu J, Wei D, Freeman WT (2019) Video enhancement with task-oriented flow. Int J Comput Vision 127(8):1106–1125 (Springer)

    Google Scholar 

  • Yang Q et al (2018) Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans Med Imaging (TMI) 37(6):1348–1357

    Google Scholar 

  • Yi X, Babyn P (2018) Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 31(5):655–669

    Google Scholar 

  • Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal 58:101552

    Google Scholar 

  • Yie SY, Kang SK, Hwang D, Lee JS (2020) Self-supervised pet denoising. Nucl Med Mol Imaging 54(6):299–304

    Google Scholar 

  • You X, Cao N, Lu H, Mao M, Wanga W (2019) Denoising of MR images with Rician noise using a wider neural network and noise range division. Magn Reson Imaging 64:154–159

    Google Scholar 

  • Yue Z, Yong H, Zhao Q, Meng D, Zhang L (2019) Variational denoising network: Toward blind noise modeling and removal. In: Advances in Neural Information Processing Systems (NeurIPS) 32, pp. 1690–1701. Curran Associates, Inc

  • Yue H, Cao C, Liao L, Chu R, Yang J (2020) Supervised raw video denoising with a benchmark dataset on dynamic scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2301–2310. IEEE

  • Yue Z, Zhao Q, Zhang L, Meng D (2020) Dual adversarial network: Toward real-world noise removal and noise generation. In: European Conference on Computer Vision (ECCV), pp. 41–58. Springer

  • Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang M-H, Shao L (2020) Cycleisp: Real image restoration via improved data synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2696–2705. IEEE

  • Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang M-H, Shao L (2020) Learning enriched features for real image restoration and enhancement. In: European Conference on Computer Vision (ECCV), pp. 492–511. Springer

  • Zamir SW, Arora A, Khan S, Hayat M, Khan FS, Yang M-H, Shao L (2021) Multi-stage progressive image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14821–14831. IEEE

  • Zeyde R et al (2012) On single image scale-up using sparse-representations. In: Curves and surfaces, pp 711–730. IEEE

  • Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process (TIP) 26(7):3142–3155

    MathSciNet  MATH  Google Scholar 

  • Zhang K, Zuo W, Zhang L (2018) Ffdnet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans Image Process (TIP) 27(9):4608–4622

    MathSciNet  Google Scholar 

  • Zhang Y et al (2019) A Poisson–Gaussian denoising dataset with real fluorescence microscopy images. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE

  • Zhang Y et al (2019) Residual non-local attention networks for image restoration. In: International Conference on Learning Representations (ICLR)

  • Zhang Y, Zhu Y, Nichols E, Wang Q, Zhang S, Smith C, Howard S (2019) A poisson-gaussian denoising dataset with real fluorescence microscopy images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11710–11718. IEEE

  • Zhang Y, Tian Y, Kong Y, Zhong B, Fu Y (2020) Residual dense network for image restoration. IEEE Trans Pattern Anal Mach Intell (PAMI) 43(7):2480–2495

    Google Scholar 

  • Zhang B, Jin S, Xia Y, Huang Y, Xiong Z (2020) Attention mechanism enhanced kernel prediction networks for denoising of burst images. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2083–2087. IEEE

  • Zhang X, Han Z, Shangguan H, Han X, Cui X, Wang A (2021) Artifact and detail attention generative adversarial networks for low-dose CT denoising. IEEE Trans Med Imaging (TMI)

  • Zhang Y, Qin H, Wang X, Li H (2021) Rethinking noise synthesis and modeling in raw denoising. In: IEEE Conference on Computer Vision (ICCV), pp. 4593–4601. IEEE

  • Zhang K, Zuo W, Gu S, Zhang L (2017) Learning deep cnn denoiser prior for image restoration. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2808–2817. IEEE

  • Zhao H, Gallo O, Frosio I, Kautz J (2017) Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3(1):47–57

    Google Scholar 

  • Zhong L, Liu G, Yang G (2021) Blind denoising of fluorescence microscopy images using gan-based global noise modeling. In: International Symposium on Biomedical Imaging (ISBI), pp. 863–867. IEEE

  • Zhou W, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84 (IEEE)

    Google Scholar 

  • Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process (TIP) 13(4):600–612 (IEEE)

    Google Scholar 

  • Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J (2020) Supervised learning with cyclegan for low-dose FDG pet image denoising. Med Image Anal 65:101770

    Google Scholar 

  • Zhou R, Achanta R, Süsstrunk S (2018) Deep residual network for joint demosaicing and super-resolution. In: Color and Imaging Conference, vol. 2018, pp. 75–80. Society for Imaging Science and Technology

  • Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2223–2232. IEEE

  • Zhu X, Hu H, Lin S, Dai J (2019) Deformable convnets v2: More deformable, better results. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9308–9316. IEEE

  • Zhussip M, Soltanayev S, Chun SY (2019) Extending steins unbiased risk estimator to train deep denoisers with correlated pairs of noisy images. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1463–1473. Curran Associates, Inc

  • Zoph B, Le QV (2017) Neural architecture search with reinforcement learning. In: International Conference on Learning Representations (ICLR)

Download references

Acknowledgements

For their funding support, we are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC), and its Discovery and Collaborative Health Research Projects (CHRP) programs, and the Canadian Institutes of Health Research (CIHR). We also thank Compute Canada and NVIDIA for the provision of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Hamarneh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, S., Sutton, D. & Hamarneh, G. Image denoising in the deep learning era. Artif Intell Rev 56, 5929–5974 (2023). https://doi.org/10.1007/s10462-022-10305-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10305-2

Keywords

Navigation