Skip to main content
Log in

Branching Rules Related to Spherical Actions on Flag Varieties

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let G be a connected semisimple algebraic group and let HG be a connected reductive subgroup. Given a flag variety X of G, a result of Vinberg and Kimelfeld asserts that H acts spherically on X if and only if for every irreducible representation R of G realized in the space of sections of a homogeneous line bundle on X the restriction of R to H is multiplicity free. In this case, the information on restrictions to H of all such irreducible representations of G is encoded in a monoid, which we call the restricted branching monoid. In this paper, we review the cases of spherical actions on flag varieties of simple groups for which the restricted branching monoids are known (this includes the case where H is a Levi subgroup of G) and compute the restricted branching monoids for all spherical actions on flag varieties that correspond to triples (G, H, X) satisfying one of the following two conditions: (1) G is simple and H is a symmetric subgroup of G; (2) G = SLn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhiezer, D., Panyushev, D.: Multiplicities in the branching rules and the complexity of homogeneous spaces. Mosc. Math. J. 2(1), 17–33 (2002)

    Article  MathSciNet  Google Scholar 

  2. Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings. Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  3. Avdeev, R.S., Petukhov, A.V.: Spherical actions on flag varieties. Sb. Math. 205(9), 1223–1263 (2014)

    Article  MathSciNet  Google Scholar 

  4. Benson, C., Ratcliff, G.: A classification of multiplicity free actions. J. Algebra 181(1), 152–186 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bourbaki, N.: Éléments de mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et Systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris (1968)

  6. Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313, 61–99 (2007)

    Article  MathSciNet  Google Scholar 

  7. Elashvili, A.G.: Invariant Algebras. In: Lie Groups, Their Discrete Subgroups, and Invariant Theory, Adv. Soviet Math., vol. 8, pp. 57–64. Amer. Math. Soc, Providence (1992)

    Book  Google Scholar 

  8. Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk SSSR 71(5), 825–828 (1950). (in Russian)

    MathSciNet  MATH  Google Scholar 

  9. Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of orthogonal matrices. Dokl. Akad. Nauk SSSR 71(6), 1017–1020 (1950). (in Russian)

    MathSciNet  Google Scholar 

  10. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants, Grad. Texts in Math., vol. 255. Springer, Dordrecht (2009)

    Book  Google Scholar 

  11. He, X., Nishiyama, K., Ochiai, H., Oshima, Y.: On orbits in double flag varieties for symmetric pairs. Transform Groups 18(4), 1091–1136 (2013)

    Article  MathSciNet  Google Scholar 

  12. Howe, R., Tan, E.-C., Willenbring, J.F.: Reciprocity Algebras and Branching for Classical Symmetric Pairs. In: Groups and Analysis, London Math. Soc. Lecture Note Ser., vol. 354, pp. 191–231. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  13. Howe, R., Umeda, T.: The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann. 290(3), 565–619 (1991)

    Article  MathSciNet  Google Scholar 

  14. Kac, V.G.: Some remarks on nilpotent orbits. J. Algebra 64(1), 190–213 (1980)

    Article  MathSciNet  Google Scholar 

  15. Knop, F.: Some remarks on multiplicity free spaces. In: Representation Theories and Algebraic Geometry, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, pp. 301–317. Springer Netherlands, Dordrecht (1998)

  16. Kraft, H.: Geometrische Methoden in der Invariantentheorie. Aspects of Math. D1. Friedr. Vieweg & Sohn, Braunschweig (1984)

    Book  Google Scholar 

  17. Krämer, M: Multiplicity-free subgroups of compact connected Lie groups. Arch. Math. 27(1), 28–36 (1976)

    Article  MathSciNet  Google Scholar 

  18. Leahy, A.S.: A classification of multiplicity free representations. J. Lie Theory 8 (2), 367–391 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Lee, C.Y.: On the branching theorem of the symplectic groups. Canad. Math. Bull. 17, 535–545 (1974)

    Article  MathSciNet  Google Scholar 

  20. Lepowsky, J.: Multiplicity formulas for certain semisimple Lie groups. Bull. Amer. Math. Soc. 77, 601–605 (1971)

    Article  MathSciNet  Google Scholar 

  21. LiE, A computer algebra package for Lie group computations, see http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE

  22. Littelmann, P.: On spherical double cones. J. Algebra 166(1), 142–157 (1994)

    Article  MathSciNet  Google Scholar 

  23. Magyar, P., Weyman, J., Zelevinsky, A.: Multiple flag varieties of finite type. Adv. Math. 141, 97–118 (1999)

    Article  MathSciNet  Google Scholar 

  24. Magyar, P., Weyman, J., Zelevinsky, A.: Symplectic multiple flag varieties of finite type. J. Algebra 230(1), 245–265 (2000)

    Article  MathSciNet  Google Scholar 

  25. Niemann, B.: Spherical affine cones in exceptional cases and related branching rules, preprint (2011), see arXiv:1111.3823 [math.RT]

  26. Onishchik, A.L., Vinberg, E.B.: Lie Groups and Algebraic Groups, Springer Ser. Soviet Math. Springer, Berlin (1990)

    Book  Google Scholar 

  27. Panyushev, D.I.: On the conormal bundle of a G-stable subvariety. Manuscripta Math. 99(2), 185–202 (1999)

    Article  MathSciNet  Google Scholar 

  28. Petukhov, A.V.: Bounded reductive subalgebras of \(\mathfrak {sl}_n\). Transform Groups 16(4), 1173–1182 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ponomareva, E.V.: Classification of double flag varieties of complexity 0 and 1. Izv. Math. 77(5), 998–1020 (2013)

    Article  MathSciNet  Google Scholar 

  30. Ponomareva, E.V.: Invariants of the Cox rings of low-complexity double flag varieties for classical groups. Trans. Moscow Math. Soc. 2015, 71–133 (2015)

  31. Ponomareva, E.V.: Invariants of the Cox rings of double flag varieties of low complexity for exceptional groups. Sb. Math. 208(5), 707–742 (2017)

    Article  MathSciNet  Google Scholar 

  32. Popov, V.L.: Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. Math. USSR-Izv. 8(2), 301–327 (1974)

    Article  Google Scholar 

  33. Steinberg, R.: Endomorphisms of Linear Algebraic Groups. Memoirs of the Americal Mathematical Society, vol. 80. American Mathematical Society, Providence (1968)

    Google Scholar 

  34. Stembridge, J.R.: Multiplicity-free products and restrictions of Weyl characters. Represent. Theory 7, 404–439 (2003)

    Article  MathSciNet  Google Scholar 

  35. Timashev, D.A.: Homogeneous Spaces and Equivariant Embeddings, Encycl. Math. Sci., vol. 138. Springer, Berlin (2011)

    Book  Google Scholar 

  36. Vinberg, E.B., Kimel’fel’d, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl. 12(3), 168–174 (1978)

    Article  MathSciNet  Google Scholar 

  37. Wallach, N., Yacobi, O.: A Multiplicity Formula for Tensor Products of SL2 Modules and an Explicit Sp2n to Sp2n− 2 × Sp2 Branching Formula. In: Symmetry in Mathematics and Physics. Contemp. Math., vol. 490, pp. 151–155. Amer. Math. Soc., Providence (2009)

    Google Scholar 

  38. Yacobi, O.: An analysis of the multiplicity spaces in branching of symplectic groups. Selecta Math. (N.S.) 16(4), 819–855 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhelobenko, D.P.: Compact Lie Groups and Their Representations. Translations of Mathematical Monographs, vol. 40. American Mathematical Society, Providence (1973)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dmitry Timashev for useful discussions. The first author thanks the Institute for Fundamental Science in Moscow for providing excellent working conditions.

The results of Sections 6.5–6.12, 7.4–7.7 are obtained by the first author supported by the grant RSF–DFG 16-41-01013. The results of Sections 6.2–6.4, 7.2–7.3 are obtained by the second author supported by the RFBR grant no. 16-01-00818 and by the DFG grant PE 980/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Avdeev.

Additional information

Presented by: Michel Brion

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, R., Petukhov, A. Branching Rules Related to Spherical Actions on Flag Varieties. Algebr Represent Theor 23, 541–581 (2020). https://doi.org/10.1007/s10468-019-09857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-019-09857-9

Keywords

Mathematics Subject Classification (2010)

Navigation