Skip to main content
Log in

Design of a low power and robust VLSI power line interference canceler with optimized arithmetic operators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The electric generator’s functional performance suffers from harmonic distortions such as first, second, and third-order. This work proposes a low power dissipation VLSI hardware architecture for a robust power line interference canceling (PLIC) in biopotential signals. Our proposed Least Mean Square (LMS) architecture presents just four clock cycles of latency per sample. The Harmonic Generator (HG) architectures are exploited and optimized in their arithmetic operations. We substituted conventional multipliers with adders and shifters and used efficient and previously published squarer units. In particular, the combination of radix-4 squarer unit and 3–2 subtractor compressor architecture is an efficient alternative for use in the HG. Our VLSI synthesis results show that combining the optimized adaptive filters LMS and HG’s hardware architecture, the proposed approach turns the PLIC VLSI structure robust and power-efficient. It effectively suppresses interferences in ECG (Electrocardiogram), EEG (Electroencephalogram), EMG (Electromyogram), and EOG (Electrooculogram) signals. Notably, the PLIC architecture is more efficient in the circuit area and power dissipation with the radix-4 and 3–2 subtractor compressor in the HG, saving up to 4.98 times in total power and 30.46% in the VLSI area, compared to the state-of-the-art solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article. However, the data that support the findings of this study are available on request from the corresponding author M.M.A.R. (e-mail: mmarosa@inf.ufpel.edu.br).

References

  1. Cohen, M., Said, R., & Inan, U. (2010). Mitigation of 50–60 Hz power line interference in geophysical data. Radio Science, 45, 1–12.

    Article  Google Scholar 

  2. Taralunga, D., Ungureanu, G., Gussi, I., Strungaru, R., and Wolf, W. (2014). Fetal ECG extraction from abdominal signals: a review on suppression of fundamental power line interference component and its harmonics. Computational and Mathematical Methods in Medicine, pp. 1–15.

  3. Costa, M., & Tavares, M. (2009). Removing harmonic power line interference from biopotential signals in low-cost acquisition systems. Computers in Biology and Medicine, 39(6), 519–526.

    Article  Google Scholar 

  4. Taralunga, D., Ungureanu, G., Strungaru, R. Cancelling harmonic power line interference in biopotentials—book chapter in the book compendium of new techniques in harmonic analysis. Licensee IntechOpen, 2018.

  5. Saxena, S., Jais, R., Hota, M. K. (2019). Removal of powerline interference from ECG signal using FIR, IIR, DWT and NLMS adaptive filter. In 2019 International conference on communication and signal processing (ICCSP), pp. 0012–0016. doi:https://doi.org/10.1109/ICCSP.2019.8698112.

  6. Ziarani, A., & Konrad, A. (2002). A nonlinear adaptive method of elimination of power line interference in ECG signals. IEEE Transactions on Biomedical Engineering, 49(6).

  7. Martens, S., Mischi, M., Oei, S., & Bergmans, J. (2006). An improved adaptive power line interference canceller for electrocardiography. IEEE Transactions on Biomedical Engineering, 53, 2220–2231.

    Article  Google Scholar 

  8. Keshtkaran, R., & Yang, Z. (2012). Power line interference cancellation in in-vivo neural recording. In 2012 Annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 5214–5217.

  9. Costa, E., Almeida, S., Matzenauer, M., & Fonseca, M. (2014). Gray encoded harmonics power line interference cancelling structure using LMS and NLMS adaptive algorithms. Journal of Integrated Circuits and Systems, 9(1), 36–47.

    Article  Google Scholar 

  10. Rosa, M., Paim, G., Rocha, L., Costa, E., Bampi, S. (2020). The radix- squared multiplier. In 27th IEEE international conference on circuits and systems, 2020. Proceedings of the 27th ICECS, pp. 1–4.

  11. Rosa, M., Ucker, P., Costa, E., Almeida, S., Paim, G., Bampi, S. (2021). A robust and power-efficient power line interference canceling VLSI design. In 34th Symposium on integrated circuits and systems design, 2021, Campinas. Proceedings of the 34th SBCCI, v. 1. p. 1–6.

  12. Keshtkaran, M., & Yang, Z. (2014). A fast, robust algorithm for power line interference cancellation in neural recording. Journal of Neural Engineering, 11, 1–20.

    Article  Google Scholar 

  13. You, D., Heo, H., Kim, H., Kwon, Y., Lee, S., & Ko, H. (2020). Power line interference reduction technique with a current-reused current- feedback instrumentation amplifier for ECG recording. Applied Sciences, 10(23), 1–12.

    Article  Google Scholar 

  14. Guidotti, V., Paim, G., Rocha, L., Costa, E., Almeida, S., & Bampi, S. (2020). Power-efficient approximate newton-raphson integer divider applied to NLMS adaptive filter for high-quality interference canceling. Circuits, Systems and Signal Processing, 39, 5729–5757.

    Article  Google Scholar 

  15. Ajeigbe, O., Munda, J., Hamam, Y. (2018). Characterisation of harmonic distortions produced by small domestic back-up generators. In 2018 IEEE PES/IAS PowerAfrica, 2018, pp. 432–437.

  16. Boonseng, C., & Kularbphettong, K. (2019). Designing harmonic filters for improving power factor and quality of synchronous generator in sugar mill plant. In 2019 International conference on power, energy and innovations (ICPEI), pp. 138–141.

  17. Widrow, B. (1975). Adaptive noise cancelling: Principles and applications. Proceedings of the IEEE, 63(12), 1692–1716.

    Article  Google Scholar 

  18. Koo, N., & Cho, S. (2019). 22.4 A 27.8 μW Biopotential amplifier tolerant to 30Vpp common-mode interference for two-electrode ECG recording in 0.18 μm CMOS. In Proceedings of the 2019 IEEE international solid-state circuits conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 366–368.

  19. Fan, Q., Sebastianen, F., Huijsing, H., Makinwa, K. (2010). A 2.1 μW area-efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65 nm CMOS. In Proceedings of the 2010 IEEE Asian solid-state circuits conference, Beijing, China, 8–10 November 2010; pp. 1–4.

  20. Yan, L., Harpe, P., Pamula, V. R., Osawa, M., Harada, Y., Tamiya, K., Hoof, C. V., & Yazicioglu, R. F. (2014). A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Transactions on Biomedical Circuits and Systems, 8, 779–786.

    Article  Google Scholar 

  21. Zhang, J., Zhang, H., Sun, Q., & Zhang, R. (2018). A low-noise, low-power amplifier with current-reused OTA for ECG recordings. IEEE Transactions on Biomedical Circuits and Systems, 12, 700–708.

    Article  Google Scholar 

  22. Piskorowski, J. (2013). Time-efficient removal of power-line noise from EMG signals using IIR notch filters with non-zero initial conditions. Biocybernetics and Biomedical Engineering., 33(3), 171–178.

    Article  Google Scholar 

  23. Merino, J., Fernandez, D., & Espla, J. (2013). Power line interference filtering on surface electromyography based on the stationary wavelet packet transform. Computer Methods and Programs in Biomedicine., 2, 338–346.

    Article  Google Scholar 

  24. Mateo, J., Morla, E., & Santos, J. (2015). A new method for removal of powerline interference in ECG and EEG recordings. Computers & Electrical Engineering., 45, 235–248. https://doi.org/10.1016/j.compeleceng.2014.12.006

    Article  Google Scholar 

  25. Seibel, G., Itturriet, F., Costa, E., Almeida, S. (2013). Fixed-point adaptive filter architecture for the harmonics power line interference canceling. In IEEE 4th Latin american symposium on circuits and systems (LASCAS), pp. 1–4.

  26. La Rosa, A.,, Tauã, P., Ucker, P., Paim, G., Costa, E., Bampi, S., Almeida, S. (2021). Exploring NLMS-based adaptive filter hardware architectures for eliminating power line interference in EEG signals. Circuits Systems and Signal Processing, pp. 3305–3337.

  27. Haykin, S. (1996). Adaptive filter theory. Prentice-Hall, Inc..

  28. Santana, G. M. et al. (2017). Using efficient adder compressors with a split-radix butterfly hardware architecture for low-power IoT smart sensors. In 2017 24th IEEE international conference on electronics, circuits and systems (ICECS), pp. 486–489.

  29. Seidel, H., da Rosa, M., Paim, G., Costa, E., Almeida, S., & Bampi, S. (2021). Exploring multi-level composition and efficient MCM schemes for an energy-efficient wavelet haar architecture. Journal of Integrated Circuits and Systems, 16(2), 1–9.

    Article  Google Scholar 

  30. Ferreira, G., Paim, G., Rocha, L. M. G., Santana, G. M., Neuenfeld, R. H., Costa, E. A. C., & Bampi, S. (2021). Low-power fast Fourier transform hardware architecture combining a split-radix butterfly and efficient adder compressors. IET Computers and Digital Techniques, 15, 230–240.

    Article  Google Scholar 

  31. Paim, G., Fonseca, M., Costa, E., Almeida, S. (2015). Power efficient 2-D rounded cosine transform with adder compressors for image compression. In 2015 IEEE International conference on electronics, circuits, and systems (ICECS), pp. 348–351.

  32. Schiavon, T., Paim, G., Fonseca, M., Costa, E., Almeida, S. (2016). Exploiting adder compressors for power-efficient 2-D approximate DCT realization. In 2016 IEEE 7th Latin American symposium on circuits & systems (LASCAS), pp. 383–386.

  33. Paim, G., & Costa, E. (2016). Using adder compressors for power-efficient 2-D approximate Discrete Tchebichef Transform. In 2016 14th IEEE international new circuits and systems conference (NEWCAS), pp. 1–4.

  34. Silveira, B., et al. (2017). Power-efficient sum of absolute differences hardware architecture using adder compressors for integer motion estimation design. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(12), 3126–3137.

    Article  MathSciNet  Google Scholar 

  35. Silveira, B., Ferreira, R., Paim, G., Diniz, C., Costa, E. (2017). Low power SATD architecture employing multiple sizes Hadamard Transforms and adder compressors. In 2017 15th IEEE international new circuits and systems conference (NEWCAS), pp. 277–280.

  36. Sequeira, L. F. et al. (2018). Low-power HEVC 8-point 2-D discrete cosine transform hardware using adder compressors. In 2018 16th IEEE international new circuits and systems conference (NEWCAS), pp. 309–312.

  37. Paim, G., Santana, G. M., Abreu, B. A., et al. (2020). Exploring high-order adder compressors for power reduction in sum of absolute differences architectures for real-time UHD video encoding. Journal of Real-Time Image Processing, 17, 1735–1754.

    Article  Google Scholar 

  38. da Rosa, M. M. A., Paim, G., Rocha, L. M. G., da Costa, E. A. C., Bampi, S. (2020). Exploring efficient adder compressors for power-efficient sum of squared differences design. In 2020 27th IEEE international conference on electronics, circuits and systems (ICECS), pp. 1–4.

  39. Silveira, B., Paim, G., Abreu, B. A., et al. (2022). The 4–2 fused adder-subtractor compressor for low-power butterfly-based hardware architectures. Circuits Syst Signal Process, 41, 1577–1595.

    Article  Google Scholar 

  40. Dornelles, R., Paim, G., Silveira, B., Fonseca, M., Costa, E., Bampi, E. (2017). A power-efficient 4–2 adder compressor topology. In 2017 15th IEEE international new circuits and systems conference (NEWCAS), pp. 281–284.

  41. Fontanari, T. V., Paim, G., Rocha, L. M. G., Ücker, P., Costa, E., Bampi, S. (2020). An efficient N-bit 8–2 adder compressor with a constant internal carry propagation delay. In 2020 IEEE 11th Latin American symposium on circuits and systems (LASCAS), 2020, pp. 1–4.

  42. Fontanari, T., Paim, G., Rocha, L. M. G., Santana, G. M., da Costa, E. A. C., & Bampi, S. (2019). A fast monolithic 8–2 adder compressor circuit. Journal of Integrated Circuits and Systems, 14(1), 1–7.

    Article  Google Scholar 

  43. Oklobdzija, V., Villeger, D., & Liu, S. (1996). A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Transactions on Computers, 45(3), 294–306.

    Article  Google Scholar 

  44. Liddicoat, A., & Flynn, M. (2000). Parallel square and cube computations. In Conference record of the thirty-fourth asilomar conference on signals, systems and computers, vol. 2, pp. 1325–1329.

  45. Dadda, L. (1965). Some schemes for parallel multipliers. Alta Frequenza, 34, 349–356.

  46. Bui, S., & Stine, J. (2014) Additional optimizations for parallel squarer units. In IEEE international symposium on circuits and systems (ISCAS), pp. 361–364.

  47. Rudagi, J., Amblr, V., Munavalli, V., Patil, R., Sajjan, V. (2011). Design and implementation of efficient multiplier using vedic mathematics. In 3rd International conference on advances in recent technologies in communication and computing (ARTCom 2011).

  48. Sharma, R., Kaur, M., Singh, G. (2015). Design and FPGA implementation of optimized 32-bit Vedic multiplier and square architectures. In International conference on industrial instrumentation and control (ICIC), pp. 960–964.

  49. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.

  50. Goldberger, L., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220.

  51. Brunner, C., Leeb, R., Putz, G., Schlogl, A., Pfurtscheller, G. (2008). BCI competition IV.

Download references

Acknowledgements

This work has been supported in part by FAPERGS under grant 19/2551-0001844-4 for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgana Macedo Azevedo da Rosa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rosa, M.M.A., da Costa, P.Ü., da Costa, E.A.C. et al. Design of a low power and robust VLSI power line interference canceler with optimized arithmetic operators. Analog Integr Circ Sig Process 112, 247–261 (2022). https://doi.org/10.1007/s10470-022-02050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02050-x

Keywords

Navigation