Skip to main content
Log in

Merchant selection and pricing strategy for a platform firm in the online group buying market

  • Data Mining and Analytics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The online group-buying market is characterized by intense competition between brokers, called platform firms, which function as intermediaries between merchants and consumers. In an environment of intense competition, merchant selection and pricing strategies are critical for platform firms. This paper employs business analytics to support strategy formulation for these firms by forecasting market demand and analyzing competitive environments. We apply the proposed decision framework, which relies on business analytics, to a study of the online group-buying market in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amemiya, T. (1974). The nonlinear two-stage least-squares estimator. Journal of Econometrics, 2, 105–110.

    Article  Google Scholar 

  • Amemiya, T. (1985). Advanced Econometrics. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Ando, T. (2014a). High-dimensional data analysis: Statistical modeling and model averaging with R. Tokyo: Asakura Publishing. (in Japanese).

    Google Scholar 

  • Ando, T. (2014b). A statistical analysis of the online group-buying market. In Proceedings of the 2014 INFORMS workshop on data mining and analytics. San Francisco, CA.

  • Atanasova, C. V., & Wilson, N. (2004). Disequilibrium in the UK corporate loan market. Journal of Banking and Finance, 28, 595–614.

    Article  Google Scholar 

  • Berry, S. (1994). Estimating discrete-choice models of product differentiation. RAND Journal of Economics, 25, 242–262.

    Article  Google Scholar 

  • Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 63, 841–890.

    Article  Google Scholar 

  • Besanko, D., Gupta, S., & Jain, D. (1998). Logit demand estimation under competitive pricing behavior: An equilibrium framework. Management Science, 44, 1533–1547.

    Article  Google Scholar 

  • Cao, P., Li, J., & Yan, H. (2012). Optimal dynamic pricing of inventories with stochastic demand and discounted criterion. European Journal of Operational Research, 217, 580–588.

    Article  Google Scholar 

  • Chang, H.-J., Teng, J.-T., Ouyang, L.-Y., & Dye, C.-Y. (2006). Retailer’s optimal pricing and lot-sizing policies for deteriorating items with partial backlogging. European Journal of Operational Research, 168, 51–64.

    Article  Google Scholar 

  • Chintagunta, P. (2001). Endogeneity and heterogeneity in a probit demand model: Estimation using aggregate data. Marketing Science, 20, 442–456.

    Article  Google Scholar 

  • Chintagunta, P., Dube, J. P., & Goh, K. Y. (2005). Beyond the endogeneity bias: The effect of unmeasured brand characteristics on household-level brand choice models. Management Science, 51, 832–849.

    Article  Google Scholar 

  • Davis, P. (2006). Spatial competition in retail markets: Movie theaters. RAND Journal of Economics, 37, 964–982.

    Article  Google Scholar 

  • Fair, R. C., & Jaffee, D. M. (1972). Methods of estimation for markets in disequilibrium. Econometrica, 40, 497–514.

    Article  Google Scholar 

  • Fair, R. C., & Kelejian, H. H. (1974). Methods of estimation for markets in disequilibrium: A further study. Econometrica, 42, 177–190.

    Article  Google Scholar 

  • Hartley, M. J. (1976). The estimation of markets in disequilibrium: The fixed supply case. International Economic Review, 17, 687–699.

    Article  Google Scholar 

  • Hsu, M.-H., Chang, C.-M., Chu, K. K., & Lee, Y.-J. (2014). Determinants of repurchase intention in online group-buying: The perspectives of DeLone & McLean IS success model and trust. Computers in Human Behavior, 36, 234–245.

    Article  Google Scholar 

  • Hsu, M.-H., Chang, C.-M., & Chuang, L.-W. (2015). Understanding the determinants of online repeat purchase intention and moderating role of habit: The case of online group-buying in Taiwan. International Journal of Information Management, 35, 45–56.

    Article  Google Scholar 

  • Hurlin, C., & Kierzenkowski, R. (2007). Credit market disequilibrium in Poland: Can we find what we expect? Non-stationarity and the short-side rule. Economic Systems, 31, 157–183.

    Article  Google Scholar 

  • Jiang, R., Manchanda, P., & Rossi, P. E. (2009). Bayesian analysis of random coefficient logit models using aggregate data. Journal of Econometrics, 149, 136–148.

    Article  Google Scholar 

  • Khouja, M., & Robbins, S. S. (2005). Optimal pricing and quantity of products with two offerings. European Journal of Operational Research, 163, 530–544.

    Article  Google Scholar 

  • Khouja, M., & Smith, M. A. (2007). Optimal pricing for information goods with piracy and saturation effect. European Journal of Operational Research, 176, 482–497.

    Article  Google Scholar 

  • Liao, S.-H., Chu, P. H., Chen, Y.-J., & Chang, C.-C. (2012). Mining customer knowledge for exploring online group buying behavior. Expert Systems with Applications, 39, 3708–3716.

    Article  Google Scholar 

  • Meir, R., Lub, T., Tennenholtz, M., & Boutilier, C. (2015). On the value of using group discounts under price competition. Artificial Intelligence, 216, 163–178.

    Article  Google Scholar 

  • Nevo, A. (2000). Mergers with differentiated products: The case of the ready-to-eat cereal industry. RAND Journal of Economics, 31, 395–421.

    Article  Google Scholar 

  • Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Econometrica, 69, 307–342.

    Article  Google Scholar 

  • Parsons, A., Ballantine, P. W., Ali, A., & Grey, H. (2014). Deal is on! Why people buy from daily deal websites. Journal of Retailing and Consumer Services, 21, 37–42.

    Article  Google Scholar 

  • Phillips, R., Simsek, A. S., & van Ryzin, G. (2015). The effectiveness of field price discretion: Empirical evidence from auto lending. Management Science, 61, 1741–1759.

    Article  Google Scholar 

  • Riddel, M. (2004). Housing-market disequilibrium: An examination of housing-market price and stock dynamics 1967–1998. Journal of Housing Economics, 13, 120–135.

    Article  Google Scholar 

  • Sudhir, K. (2001). Competitive pricing behavior in the auto market: A structural analysis. Marketing Science, 20, 42–60.

    Article  Google Scholar 

  • Velupillai, K. V. (2006). A disequilibrium macrodynamic model of fluctuations. Journal of Macroeconomics, 28, 752–767.

    Article  Google Scholar 

  • Xing, W., Wang, S., & Liu, L. (2012). Optimal ordering and pricing strategies in the presence of a B2B spot market. European Journal of Operational Research, 216, 87–98.

    Article  Google Scholar 

  • Zhang, Z., Zhang, Z., Wang, F., Law, R., & Li, D. (2013). Factors influencing the effectiveness of online group buying in the restaurant industry. International Journal of Hospitality Management, 35, 237–245.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Guest Editor, two anonymous referees for their helpful suggestions and comments. We also appreciate the constructive comments of participants at the 2014 INFORMS Workshop on Data Mining and Analytics. We have benefited from fruitful discussion with Anand Bodapati and Chen Hsiao. This research was partially supported by the Japan Center for Economic Research and a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Ando.

Additional information

This paper is prepared for the special issue on “Data Mining and Analytics”. This paper is an extended version of Ando, T. (2014) “A statistical analysis of the online daily deals promotion market”, Proceedings of 2014 INFORMS Workshop on Data Mining and Analytics.

Appendix: proof of Theorem 1

Appendix: proof of Theorem 1

First, we point out that our proof relies on the strategy in Amemiya (1985, pp. 366–372). For simplicity of notation, we denote \(f_d (d_{kt}|{\varvec{z}}_{kt},{\varvec{\gamma }},\sigma _v^2)\) and \(g(Q_{kt}|{\varvec{x}}_{kt},{\varvec{z}}_{kt},{\varvec{\beta }},\sigma _\varepsilon ^2,\sigma _v^2,\rho )\) as \(f_d (d_{kt},{\varvec{\theta }}_1)\) and \(g(Q_{kt}|{\varvec{\theta }}_1,{\varvec{\theta }}_2)\), respectively. Here \({\varvec{\theta }}_1=({\varvec{\gamma }}',\sigma _v^2)'\), and \({\varvec{\theta }}_2=({\varvec{\beta }}',\sigma _\varepsilon ^2,\rho )'\). Noting that \(\partial \ell (\hat{{\varvec{\theta }}}_1,\hat{{\varvec{\theta }}}_2)/\partial {\varvec{\theta }}_2={\varvec{0}}\), we have

$$\begin{aligned} {\varvec{0}}= & {} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial g(Q_{kt}|\hat{{\varvec{\theta }}}_1,\hat{{\varvec{\theta }}}_2)}{\partial {\varvec{\theta }}_2}\nonumber \\= & {} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial g(Q_{kt}|{\varvec{\theta }}_1^0,{\varvec{\theta }}_2^0)}{\partial {\varvec{\theta }}_2} + \frac{1}{n} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial ^2 g(Q_{kt}|{\varvec{\theta }}_1^0,{\varvec{\theta }}_2^0)}{\partial {\varvec{\theta }}_2\partial {\varvec{\theta }}_2'} \sqrt{n}(\hat{{\varvec{\theta }}}_2-{\varvec{\theta }}_2^0)\nonumber \\&+ \frac{1}{n} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial ^2 g(Q_{kt}|{\varvec{\theta }}_1^0,{\varvec{\theta }}_2^0)}{\partial {\varvec{\theta }}_2\partial {\varvec{\theta }}_1'} \sqrt{n}(\hat{{\varvec{\theta }}}_1-{\varvec{\theta }}_1^0) +o_p(1)\nonumber \\= & {} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial g(Q_{kt}|{\varvec{\theta }}_1^0,{\varvec{\theta }}_2^0)}{\partial {\varvec{\theta }}_2} -\hat{R}_{\theta _2\theta _2}\sqrt{n}(\hat{{\varvec{\theta }}}_2-{\varvec{\theta }}_2^0) -\hat{R}_{\theta _2\theta _1}\sqrt{n}(\hat{{\varvec{\theta }}}_1-{\varvec{\theta }}_1^0) +o_p(1), \nonumber \\ \end{aligned}$$
(7)

where \(\hat{R}_{\theta _2\theta _2}\) and \(\hat{R}_{\theta _2\theta _1}\) are the empirical versions of \(R_{\theta _2\theta _2}\) and \(R_{\theta _2\theta _1}\), respectively. In a similar manner, we expand the first-order conditions for \(\hat{{\varvec{\theta }}}_1\) as

$$\begin{aligned} {\varvec{0}}= & {} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial \log f_d (d_{kt},\hat{{\varvec{\theta }}}_1)}{\partial {\varvec{\theta }}_1} = \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial \log f_d (d_{kt},{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_1}\\&+ \frac{1}{n} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial ^2 \log f_d (d_{kt},{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_2\partial {\varvec{\theta }}_1'} \sqrt{n}(\hat{{\varvec{\theta }}}_1-{\varvec{\theta }}_1^0) +o_p(1), \end{aligned}$$

which implies

$$\begin{aligned} \sqrt{n}(\hat{{\varvec{\theta }}}_1-{\varvec{\theta }}_1^0)= & {} \left[ - \frac{1}{n} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial ^2 \log f_d (d_{kt},{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_2\partial {\varvec{\theta }}_1'} \right] ^{-1} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial \log f_d (d_{kt},{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_1} +o_p(1)\nonumber \\= & {} \hat{R}_{\theta _1\theta _1}^{-1} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial \log f_d (d_{kt},{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_1} +o_p(1), \end{aligned}$$
(8)

where \(\hat{R}_{\theta _1\theta _1}\) are the empirical versions of \(R_{\theta _1\theta _1}\).

Substituting (8) into (7), we have

$$\begin{aligned} \hat{R}_{\theta _2\theta _2} \sqrt{n}(\hat{{\varvec{\theta }}}_2-{\varvec{\theta }}_2^0)= & {} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial g(Q_{kt}|{\varvec{\theta }}_1^0,{\varvec{\theta }}_2^0)}{\partial {\varvec{\theta }}_2}\\&- \hat{R}_{\theta _2\theta _1} \hat{R}_{\theta _1\theta _1}^{-1} \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \frac{\partial \log f_d (d_{kt},{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_1} +o_p(1), \end{aligned}$$

or equivalently

$$\begin{aligned} \sqrt{n}(\hat{{\varvec{\theta }}}_2-{\varvec{\theta }}_2^0) = \hat{R}_{\theta _2\theta _2}^{-1} \left( I,-\hat{R}_{\theta _2\theta _1} \hat{R}_{\theta _1\theta _1}^{-1} \right) \frac{1}{\sqrt{n}} \sum _{t=1}^T \sum _{k=1}^{N_t} \left( \begin{array}{cc} \displaystyle \frac{\partial g(Q_{kt}|{\varvec{\theta }}_1^0,{\varvec{\theta }}_2^0)}{\partial {\varvec{\theta }}_2}\\ \displaystyle \frac{\partial \log f_d (d_{kt}|{\varvec{\theta }}_1^0)}{\partial {\varvec{\theta }}_1} \end{array} \right) +o_p(1). \end{aligned}$$

Together with (5), \(\sqrt{n}(\hat{{\varvec{\theta }}}_2-{\varvec{\theta }}_2^0)\) is asymptotically normal with mean \({\varvec{0}}\) and variance matrix V. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, T. Merchant selection and pricing strategy for a platform firm in the online group buying market. Ann Oper Res 263, 209–230 (2018). https://doi.org/10.1007/s10479-015-2036-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-015-2036-9

Keywords

Navigation