Skip to main content

Advertisement

Log in

Are quantity flexibility contracts with discounts in the presence of spot market procurement relevant for the humanitarian supply chain? An exploration

  • S.I.: Business Analytics and Operations Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Procurement of aid material such as vaccines by a humanitarian agency (HA) is often fraught with uncertainties. For example, an epidemic outbreak can increase the demand for materials (such as vaccines) in a very short period. Most of the HAs depend on external donations (funding) to procure necessary vaccines to meet this demand. Hence, it is financially infeasible and operationally inefficient for the HA to procure large quantities of aid material in anticipation of a demand spike during an epidemic outbreak. Thus, the procurement processes for aid materials such as vaccines need to be flexible enough to meet these demand fluctuations. HAs can achieve this flexibility by employing a procurement mechanism portfolio that includes upfront buying, capacity reservation, spot market purchase, etc. However, the challenge lies in identifying the optimal combination of multiple procurement mechanisms and how they can be utilized to coordinate the humanitarian supply chain. In this study, we explore the feasibility of quantity flexibility contracts along with discount incentives combined with spot market procurement in humanitarian supply chains for aid material procurement. We also derive the conditions under which the contract can achieve systemic coordination between the supplier and HA. Furthermore, we also illustrate that under optimal conditions, the procurement of aid material using multiple procurement mechanisms by HA can also reduce the humanitarian supply chain’s total cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold, J., Minner, S., & Eidam, B. (2009). Raw material procurement with fluctuating prices. International Journal of Production Economics, 121(2), 353–364.

    Google Scholar 

  • Balcik, B., & Ak, D. (2014). Supplier selection for framework agreements in humanitarian relief. Production and Operations Management, 23(6), 1028–1041.

    Google Scholar 

  • Balcik, B., Beamon, B. M., Krejci, C. C., Muramatsu, K. M., & Ramirez, M. (2010). Coordination in humanitarian relief chains: Practices, challenges and opportunities. International Journal of Production Economics, 126(1), 22–34.

    Google Scholar 

  • Balcik, B., Bozkir, C. D. C., & Kundakcioglu, O. E. (2016). A literature review on inventory management in humanitarian supply chains. Surveys in Operations Research and Management Science, 21(2), 101–116.

    Google Scholar 

  • Barnes-Schuster, D., Bassok, Y., & Anupindi, R. (2002). Coordination and flexibility in supply contracts with options. Manufacturing & Service Operations Management, 4(3), 171–207.

    Google Scholar 

  • Benth, F. E., Kiesel, R., & Nazarova, A. (2012). A critical empirical study of three electricity spot price models. Energy Economics, 34(5), 1589–1616.

    Google Scholar 

  • Boyabatlı, O., Kleindorfer, P. R., & Koontz, S. R. (2011). Integrating long-term and short-term contracting in beef supply chains. Management Science, 57(10), 1771–1787.

    Google Scholar 

  • Briones, R. M. (2014). Public stockholding in Southeast Asia: Review and Prospects. Studies, 31(2), 91–96.

    Google Scholar 

  • Cachon, G. (2003). Supply chain coordination with contracts. In A. G. de Kok & S. C. Graves (Eds.), Handbooks in operations research and management science. (pp. 227–339). Elsevier BV.

    Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management Science, 47(5), 629–646.

    Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: Strengths and limitations. Management Science, 51(1), 30–44.

    Google Scholar 

  • Chen, Y., Xue, W., & Yang, J. (2013). Optimal inventory policy in the presence of a long-term supplier and a spot market. Operations Research, 61(1), 88–97.

    Google Scholar 

  • Chopra, S., & Meindl, P. (2004). Supply chain management. (2nd ed.). Pearson Education.

    Google Scholar 

  • Chung, W., Talluri, S., & Narasimhan, R. (2014). Quantity flexibility contract in the presence of discount incentive. Decision Sciences, 45(1), 49–79.

    Google Scholar 

  • Davis, L. B., Samanlioglu, F., Qu, X., & Root, S. (2013). Inventory planning and coordination in disaster relief efforts. International Journal of Production Economics, 141(2), 561–573.

    Google Scholar 

  • Ertem, M. A., Buyurgan, N., & Rossetti, M. D. (2010). Multiple-buyer procurement auctions framework for humanitarian supply chain management. International Journal of Physical Distribution & Logistics Management, 40(3), 202–227.

    Google Scholar 

  • Fabian, T., Fisher, J. L., Sasieni, M. W., & Yardeni, A. (1959). Purchasing raw material on a fluctuating market. Operations Research, 7(1), 107–122.

    Google Scholar 

  • Falasca, M., & Zobel, C. W. (2011). A two-stage procurement model for humanitarian relief supply chains. Journal of Humanitarian Logistics and Supply Chain Management, 1(2), 151–169.

    Google Scholar 

  • Farlow, D., Schmidt, G., Tsay, A. A. (1995). Supplier management at Sun Microsystems. Case Study, Graduate School of Business, Stanford University, Stanford, CA.

  • Fathalikhani, S., Hafezalkotob, A., & Soltani, R. (2018). Cooperation and coopetition among humanitarian organizations: A game theory approach. Kybernetes, 47(8), 1642–1663.

    Google Scholar 

  • Fathalikhani, S., Hafezalkotob, A., & Soltani, R. (2019). Government intervention on cooperation, competition, and coopetition of humanitarian supply chains. Socio-Economic Planning Sciences, 69, 100715.

    Google Scholar 

  • Feng, Q., & Sethi, S. (2010). Procurement flexibility under-price uncertainty. In T. C. Edwin Cheng & T.-M. Choi (Eds.), Innovative quick response programs in logistics and supply chain management. Berlin: Springer-Verlag.

    Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement management using option contracts: Random spot price and the portfolio effect. IIE transactions, 42(11), 793–811.

    Google Scholar 

  • Fu, Q., Zhou, S. X., Chao, X., & Lee, C. Y. (2012). Combined pricing and portfolio option procurement. Production and Operations Management, 21(2), 361–377.

    Google Scholar 

  • Haksöz, Ç., & Seshadri, S. (2007). Supply chain operations in the presence of a spot market: A review with discussion. Journal of the Operational Research Society, 58(11), 1412–1429.

    Google Scholar 

  • Heydari, J., Govindan, K., Nasab, H. R. E., & Taleizadeh, A. A. (2020). Coordination by quantity flexibility contract in a two-echelon supply chain system: Effect of outsourcing decisions. International Journal of Production Economics, 225, 107586.

    Google Scholar 

  • Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-Vera, F. (2013). On the appropriate objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31(5), 262–280.

    Google Scholar 

  • Hu, S., & Dong, Z. S. (2019). Supplier selection and pre-positioning strategy in humanitarian relief. Omega, 83, 287–298.

    Google Scholar 

  • Hu, S. L., Han, C. F., & Meng, L. P. (2017). Stochastic optimization for joint decision making of inventory and procurement in humanitarian relief. Computers & Industrial Engineering, 111, 39–49.

    Google Scholar 

  • Hu, Z., Tian, J., & Feng, G. (2019). A relief supplies purchasing model based on a put option contract. Computers & Industrial Engineering, 127, 253–262.

    Google Scholar 

  • Inderfurth, K., Kelle, P., & Kleber, R. (2013). Dual sourcing using capacity reservation and spot market: Optimal procurement policy and heuristic parameter determination. European Journal of Operational Research, 225(2), 298–309.

    Google Scholar 

  • John, L., Gurumurthy, A., Mateen, A., & Narayanamurthy, G. (2020). Improving the coordination in the humanitarian supply chain: Exploring the role of options contract. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03778-3.

    Article  Google Scholar 

  • Kovács, G., & Tatham, P. (2009). Responding to disruptions in the supply network-from dormant to action. Journal of Business Logistics, 30(2), 215–229.

    Google Scholar 

  • Lamenza, A. A. D. S., Fontainha, T. C., & Leiras, A. (2019). Purchasing strategies for relief items in humanitarian operations. Journal of Humanitarian Logistics and Supply Chain Management, 9(2), 151–171.

    Google Scholar 

  • Lariviere, M. (1999). Supply chain contracting and coordination with stochastic demand. In S. Tayur, R. Ganeshan, & M. Magazine (Eds.), Quantitative models for supply chain management. (pp. 233–268). Kluwer Academic.

    Google Scholar 

  • Li, X., Lian, Z., Choong, K. K., & Liu, X. (2016). A quantity-flexibility contract with coordination. International Journal of Production Economics, 179, 273–284.

    Google Scholar 

  • Liang, L., Wang, X., & Gao, J. (2012). An option contract pricing model of relief material supply chain. Omega, 40(5), 594–600.

    Google Scholar 

  • Liu, Y., Tian, J., Feng, G., & Hu, Z. (2019). A relief supplies purchasing model via option contracts. Computers & Industrial Engineering, 137, 106009.

    Google Scholar 

  • Lovejoy, W. S. (1999). Integrated operations. . Southwestern College Publishing.

    Google Scholar 

  • Martínez-de-Albéniz, V., & Simchi-Levi, D. (2005). A portfolio approach to procurement contracts. Production and Operations Management, 14(1), 90–114.

    Google Scholar 

  • McGinnis, M. D. (2000). Policy substitutability in complex humanitarian emergencies. Journal of Conflict Resolution, 44(1), 62–89.

    Google Scholar 

  • McLachlin, R., & Larson, P. D. (2011). Building humanitarian supply chain relationships: lessons from leading practitioners. Journal of Humanitarian Logistics and Supply Chain Management, 1(1), 32–49.

    Google Scholar 

  • Merzifonluoglu, Y. (2017). Integrated demand and procurement portfolio management with spot market volatility and option contracts. European Journal of Operational Research, 258(1), 181–192.

    Google Scholar 

  • PAHO. (2001). Humanitarian supply management in logistics in the health sector. . Pan American Health Organization.

    Google Scholar 

  • Park, S.J., Lai, G., Seshadri, S. (2012). Inventory sharing on commodity procurement: Sequence of decisions and transfer prices. http://ssrn.com/abstract=1998914.

  • Ruiz, C., Kazempour, S. J., & Conejo, A. J. (2012). Equilibria in futures and spot electricity markets. Electric Power Systems Research, 84(1), 1–9.

    Google Scholar 

  • Safaei, A. S., Farsad, S., & Paydar, M. M. (2018). Robust bi-level optimization of relief logistics operations. Applied Mathematical Modelling, 56, 359–380.

    Google Scholar 

  • Salmerón, J., & Apte, A. (2010). Stochastic optimization for natural disaster asset pre-positioning. Production and Operations Management, 19(5), 561–574.

    Google Scholar 

  • Santarelli, G., Abidi, H., Klumpp, M., & Regattieri, A. (2015). Humanitarian supply chains and performance measurement schemes in practice. International Journal of Productivity and Performance Management, 64(6), 784–810.

    Google Scholar 

  • Sethi, S. P., Yan, H., & Zhang, H. (2004). Quantity flexibility contracts: optimal decisions with information updates. Decision Sciences, 35(4), 691–712.

    Google Scholar 

  • Shamsi, G. N., Ali Torabi, S., & Shakouri, G. H. (2018). An option contract for vaccine procurement using the SIR epidemic model. European Journal of Operational Research, 267(3), 1122–1140.

    Google Scholar 

  • Taupiac, C. (2001). Humanitarian and development procurement: Avast and growing market. In International Trade Forum (No. 4, pp. 7–10). International Trade Centre UNCTAD/GATT.

  • Torabi, S. A., Shokr, I., Tofighi, S., & Heydari, J. (2018). Integrated relief pre-positioning and procurement planning in humanitarian supply chains. Transportation Research Part E: Logistics and Transportation Review, 113, 123–146.

    Google Scholar 

  • Toyasaki, F., Arikan, E., Silbermayr, L., & Falagara Sigala, I. (2017). Disaster relief inventory management: Horizontal cooperation between humanitarian organizations. Production and Operations Management, 26(6), 1221–1237.

    Google Scholar 

  • Tsay, A. A. (1999). The quantity flexibility contract and supplier-customer incentives. Management Science, 45(10), 1339–1358.

    Google Scholar 

  • Tsay, A. A., & Lovejoy, W. S. (1999). Quantity flexibility contracts and supply chain performance. Manufacturing & Service Operations Management, 1(2), 89–111.

    Google Scholar 

  • Turkeš, R., Cuervo, D. P., & Sörensen, K. (2017). Pre-positioning of emergency supplies: Does putting a price on human life help to save lives? Annals of Operations Research. https://doi.org/10.1007/s10479-017-2702-1.

    Article  Google Scholar 

  • UNICEF Supply Division (2016 a). Yellow fever vaccine: Current supply outlook. Available at: https://www.unicef.org/supply/files/YF_number_3_Supply_Update.pdf (Accessed on: 21/08/2018)

  • UNICEF (2016 b). Supply annual report. Available at: https://www.unicef.org/supply/files/Supply_Annual_Report_2016.pdf (Accessed on: 21/06/2018)

  • Vukina, T., Shin, C., & Zheng, X. (2009). Complementarity among alternative procurement arrangements in the pork packing industry. Journal of Agricultural & Food Industrial Organization. https://doi.org/10.2202/1542-0485.1252.

    Article  Google Scholar 

  • Wang, X., Li, F., Liang, L., Huang, Z., & Ashley, A. (2015). Pre-purchasing with option contract and coordination in a relief supply chain. International Journal of Production Economics, 167, 170–176.

    Google Scholar 

  • Wu, G. (2005). Quantity flexibility contract under bayesian updating. Computer and Operations Research, 32(5), 1267–1288.

    Google Scholar 

  • Zhao, Y., Choi, T. M., Cheng, T. E., & Wang, S. (2018). Supply option contracts with spot market and demand information updating. European Journal of Operational Research, 266(3), 1062–1071.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijo John.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Profit function of HA

$$ \begin{aligned} \pi_{HA} = & \left( {S - P_{1} } \right)\left( {1 + \alpha } \right)q_{1} + \left( {S - P_{2} } \right)q_{2} \\ & - \left( {S - P_{1} } \right)\mathop \int \limits_{{\left( {1 - \omega } \right)q_{1} + q_{2} }}^{{\left( {1 + \alpha } \right)q_{1} + q_{2} }} F\left( X \right)dX - \left( {S - v} \right)\mathop \int \limits_{0}^{{\left( {1 - \omega } \right)q_{1} + q_{2} }} F\left( X \right)dX \\ & + \left( {S - P_{i} } \right)\mathop \int \limits_{{\left( {1 + \alpha } \right)q_{1} + q_{2} }}^{\infty } F\left( X \right)dX \\ \end{aligned} $$
(A1)

Taking the FOC,

$$ \frac{d}{{dq_{1} }}\left( {\pi_{HA} } \right) = \left( {P_{i} - P_{1} } \right)\left( {1 + \alpha } \right) - \left( {P_{i} - P_{1} } \right)\left( {1 + \alpha } \right)F\left( A \right) - \left( {P_{1} - v} \right)\left( {1 - \omega } \right)F\left( B \right) $$
(A2)
$$ \frac{d}{{dq_{2} }}\left( {\pi_{HA} } \right) = \left( {P_{i} - P_{2} } \right) - \left( {P_{i} - P_{1} } \right)F\left( A \right) - \left( {P_{1} - v} \right)F\left( B \right) $$
(A3)

where \(A = \left( {1 + \alpha } \right)q_{1} + q_{2}\) and \(B = \left( {1 - \omega } \right)q_{1} + q_{2}\).

Solving for F(A) by (A2)–(A3) \(\left( {1 - \omega } \right)\)

$$ \left( {P_{i} - P_{1} } \right)\left( {1 - \alpha } \right) - \left( {P_{i} - P_{2} } \right)\left( {1 - \omega } \right) - \left( {P_{i} - P_{1} } \right)F\left( A \right)\left( {\left( {1 - \alpha } \right) - \left( {1 - \omega } \right)} \right) = 0 $$
$$ F\left( A \right) = \frac{{\left( {P_{i} - P_{1} } \right)\left( {1 + \alpha } \right) - \left( {P_{i} - P_{2} } \right)\left( {1 - \omega } \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {\alpha + \omega } \right)}} $$
$$ F\left( A \right) = \frac{{\left( {P_{i} - P_{1} } \right)\xi - \left( {P_{i} - P_{2} } \right)}}{{(P_{i} - P_{2} )\left( {\xi - 1} \right)}} $$
(A4)

Similarly, for F(B), \(\left( {A2} \right) - \left( {A3} \right)\left( {1 - \alpha } \right)\)

$$ \left( {P_{i} - P_{1} } \right)\left( {1 + \alpha } \right) - \left( {P_{i} - P_{2} } \right)\left( {1 + \alpha } \right) - \left( {P_{1} - v} \right)\left( {1 - \omega } \right)F\left( B \right) + \left( {P_{1} - v} \right)\left( {1 + \alpha } \right)F\left( B \right) = 0 $$
$$ F\left( B \right) = \frac{{\left( {P_{1} - P_{2} } \right)\xi }}{{\left( {P_{1} - v} \right)\left( {\xi - 1} \right)}} $$
(A5)

The joint concavity in q1 and q2 follows directly from the objective function for HO in Eq. (1) since the second-order conditions on \(\frac{{\partial^{2} E\left( {\pi_{HA} } \right)}}{{\partial q_{1}^{2} }} < 0\) and \(\frac{{\partial^{2} E\left( {\pi_{HA} } \right)}}{{\partial q_{2}^{2} }} < 0\). Furthermore, the \(Max\left( {X,0} \right)\) is an increasing function and linearity of \(\left( {1 - \omega } \right)q_{1} + q_{2}\) and \(\left( {1 + \alpha } \right)q_{1} + q_{2}\) preserves the concavity of the model.

Proof for Proposition 1

Since \(0 \le F\left( B \right) \le F\left( A \right)\), we get,

$$ \frac{{\left( {P_{1} - P_{2} } \right)\xi }}{{\left( {P_{1} - v} \right)\left( {\xi - 1} \right)}} \le \frac{{\left( {P_{i} - P_{1} } \right)\xi - \left( {P_{i} - P_{2} } \right)}}{{\left( {P_{i} - P_{2} } \right)\left( {\xi - 1} \right)}} $$
$$ \frac{{P_{1} - v}}{{P_{1} - v}}\xi - \frac{{\left( {P_{2} - v} \right)}}{{P_{1} - v}}\xi = \xi - \frac{{P_{i} - P_{2} }}{{P_{i} - P_{1} }} $$
$$ \xi \ge \frac{{\left( {P_{i} - P_{2} } \right)\left( {P_{1} - v} \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {P_{2} - v} \right)}} $$
(A6)

Proof for Proposition 2

The proof of proposition 2 has two parts. Firstly, the optimal values of \(q_{1}^{*}\) and \(q_{2}^{*}\) will be obtained and subsequently, the conditions in proposition 2 will be proved.

Let,

$$ \left( {1 + \alpha } \right)q_{1} + q_{2} = F^{ - 1} \left( H \right) $$
(A7)
$$ \left( {1 - \omega } \right)q_{1} + q_{2} = F^{ - 1} \left( K \right) $$
(A8)

Solving Eq. (A7 and A8)

$$ q_{1} = \frac{{F^{ - 1} \left( H \right) - F^{ - 1} \left( K \right)}}{{\left( {\xi - 1} \right)\left( {1 - \omega } \right)}} $$
(A9)
$$ q_{2} = \frac{{\xi F^{ - 1} \left( K \right) - F^{ - 1} \left( H \right)}}{\xi - 1} $$
(A10)

For \(\xi \ge \frac{{\left( {P_{i} - P_{2} } \right)\left( {P_{1} - v} \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {P_{2} - v} \right)}}\), HA will be incentivized to opt for QF contract. To show that \(q_{1}^{*}\) is constrained by \(q_{QF}\), let’s assume under QFDi, \(q_{2}^{*} > 0\). Thus, the profit function of HA will be given by

$$ \begin{aligned} \pi_{HA} \left( {q_{1} ,q_{2}^{*} } \right) = & \left( {S - P_{1} } \right)\left( {1 + \alpha } \right)q_{1} + \left( {S - P_{2} } \right)q_{2}^{*} - \left( {S - P_{1} } \right)\mathop \int \limits_{{\left( {1 - \omega } \right)q_{1} + q_{2}^{*} }}^{{\left( {1 + \alpha } \right)q_{1} + q_{2}^{*} }} F\left( X \right)dX \\ & - \left( {S - v} \right)\mathop \int \limits_{0}^{{\left( {1 - \omega } \right)q_{1} + q_{2}^{*} }} F\left( X \right)dX + \left( {S - P_{i} } \right)\mathop \int \limits_{{\left( {1 + \alpha } \right)q_{1} + q_{2}^{*} }}^{\infty } F\left( X \right)dX \\ \end{aligned} $$
(A11)

For the demand distribution of \(D^{\prime} = D - q_{2}^{*}\), the profit function becomes

$$ \begin{aligned} \pi_{HA} \left( {q_{1} ,q_{2}^{*} |D^{\prime}} \right) = & \left( {S - P_{1} } \right)\left( {1 + \alpha } \right)q_{1} + \left( {S - P_{2} } \right)q_{2}^{*} - \left( {S - P_{1} } \right)\mathop \int \limits_{{\left( {1 - \omega } \right)q_{1} }}^{{\left( {1 + \alpha } \right)q_{1} }} F\left( X \right)dX \\ & - \left( {S - v} \right)\mathop \int \limits_{0}^{{\left( {1 - \omega } \right)q_{1} }} F\left( X \right)dX + \left( {S - P_{i} } \right)\mathop \int \limits_{{\left( {1 + \alpha } \right)q_{1} }}^{\infty } F\left( X \right)dX \\ \end{aligned} $$
(A12)

Equation (A12) is similar to the profit function of a pure QF contract, but for the demand distribution function of \(D^{\prime}\). The optimal solution of (A12) \(q_{1}^{\prime* } q_{QF}\) since \(D^{{\prime }} < D\) for \(q_{2}^{*} > 0\). Thus, the limiting value for the \(q_{1}^{*} = q_{QF}\) is obtained when \(q_{2}^{*} = 0.\)

For pure price discount contract, where the profit function for the HA is given by

$$ \pi_{HA} = \left( {S - P_{2} } \right)q_{2} - \left( {S - v} \right)\mathop \int \limits_{0}^{{q_{2} }} F\left( X \right)dX + \left( {S - P_{i} } \right)\mathop \int \limits_{{q_{2} }}^{\infty } F\left( X \right)dX $$
(A13)

FOC of Eq. (A13) gives,

$$ q_{2} = F^{ - 1} \left( {\frac{{P_{i} - P_{2} }}{{P_{i} - v}}} \right) $$
(A14)

Let \(q_{1}^{*} > 0\), the optimal forecast under QFDi contact. Then, expected profit function of HA will be given by

$$ \begin{aligned} \pi_{HA} \left( {q_{1}^{*} ,q_{2} } \right) = & \left( {S - P_{1} } \right)\left( {1 + \alpha } \right)q_{1}^{*} + \left( {S - P_{2} } \right)q_{2} \\ & - \left( {S - P_{1} } \right)\mathop \int \limits_{{\left( {1 - \omega } \right)q_{1}^{*} + q_{2} }}^{{\left( {1 + \alpha } \right)q_{1}^{*} + q_{2} }} \left( {D - X} \right)dX \\ & - \left( {S - v} \right)\mathop \int \limits_{0}^{{\left( {1 - \omega } \right)q_{1}^{*} + q_{2} }} \left( {D - X} \right)dX \\ & + \left( {S - P_{i} } \right)\mathop \int \limits_{{\left( {1 + \alpha } \right)q_{1}^{*} + q_{2} }}^{\infty } \left( {X - D} \right)dX \\ \end{aligned} $$
(A15)

Let \(D_{1} = D - \left( {1 + \alpha } \right)q_{1}^{*}\) and \(D_{2} = D - \left( {1 + \omega } \right)q_{1}^{*}\). Thus, Eq. (A15) can be written as

$$ \begin{aligned} \pi_{HA} \left( {q_{1}^{*} ,q_{2} } \right) = & \left( {S - P_{1} } \right)\left( {1 + \alpha } \right)q_{1}^{*} + \left( {S - P_{2} } \right)q_{2} \\ & - \left( {S - P_{1} } \right)\left( {\mathop \int \limits_{0}^{{q_{2} }} \left( {D_{1} - X} \right)dX - \mathop \int \limits_{0}^{{q_{2} }} \left( {D_{2} - X} \right)dX} \right) \\ & - \left( {S - v} \right)\mathop \int \limits_{0}^{{q_{2} }} \left( {D_{2} - X} \right)dX + \left( {S - P_{i} } \right)\mathop \int \limits_{{q_{2} }}^{\infty } \left( {X - D_{1} } \right)dX \\ \end{aligned} $$
(A16)

For \(\xi < \frac{{\left( {P_{i} - P_{2} } \right)\left( {P_{1} - v} \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {P_{2} - v} \right)}}\), HA does not have any incentive to take part in QF contract over the quantity discount contracts since the flexibility does not outweigh cost of overstocking by HA. Thus, profit function for HA under this condition will be given by

$$ \pi_{HA}^{1} \left( {q_{2}^{*} } \right) = \left( {S - P_{2} } \right)q_{2} - \left( {S - v} \right)\mathop \int \limits_{0}^{{q_{2} }} \left( {D_{2} - X} \right)dX + \left( {S - P_{i} } \right)\mathop \int \limits_{{q_{2} }}^{\infty } \left( {X - D_{1} } \right)dX $$
(A17)

Equation (A17) is similar to pure quantity discount contract. The optimal value for

$$ q_{2}^{{\pi^{1} }} = F_{{\pi^{1} }}^{ - 1} \left( {\frac{{P_{i} - P_{2} }}{{P_{i} - v}}} \right) < F^{ - 1} \left( {\frac{{P_{i} - P_{2} }}{{P_{i} - v}}} \right) $$

since the demand distribution \(D_{1} \& D_{2} < D\), indicating the limiting value for \(q_{2}^{*}\) for any value of \(q_{1} > 0\).

2.1 Profit of the centralized HSC under QFDi

$$ E(\pi_{c} ) = \left( {S - c} \right)Q - \left( {S - v} \right)EMax\left( {Q - X,0} \right) + \left( {S - c_{i} } \right)EMax\left( {X - Q, 0} \right) $$
(A18)

thus, the optimal order quantity under centralized system is

$$ F^{ - 1} \left( {\frac{{c_{i} - c}}{{c_{i} - v}}} \right) = Q_{c}^{*} $$
(A19)

Proof for Proposition 3

The optimal production quantity should be equal to the centralized ordering quantity. Thus, for RHS

$$ \left( {1 + \alpha } \right)q_{1}^{*} + q_{2}^{*} = Q_{c}^{*} $$
(A20)
$$ \frac{{\left( {P_{i} - P_{1} } \right)\xi - \left( {P_{i} - P_{2} } \right)}}{{\left( {P_{i} - P_{2} } \right)\left( {\xi - 1} \right)}} = \frac{{c_{i} - c}}{{c_{i} - v}} $$
(A21)

Rearranging,

$$ P_{2} = P_{1} - \frac{{\left( {P_{i} - P_{1} } \right)\left( {\xi - 1} \right)\left( {c - v} \right)}}{{c_{i} - v}} $$
(A22)

Proof for Proposition 4

Since the spot market prices will always be more that regular prices, the \(P_{1} < P_{i}\) is straightforward. For the RHS, proposition 1, we know that minimum flexibility required for QF part to be activated. Therefore, for \(\xi < \frac{{\left( {P_{i} - P_{2} } \right)\left( {P_{1} - v} \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {P_{2} - v} \right)}}\), HA will not have an incentive to order under QF. Thus,

$$ \xi < \frac{{\left( {P_{i} - P_{2} } \right)\left( {P_{1} - v} \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {P_{2} - v} \right)}} $$
(A23)

rearranging,

$$ \frac{{\xi \left( {P_{2} - v} \right) - \left( {P_{1} - v} \right)}}{{P_{1} - v}} < \frac{{P_{1} - P_{2} }}{{P_{i} - P_{1} }} $$
(A24)

Combining both results,

$$ P_{1} < P_{i} < P_{1} + \frac{{\left( {P_{1} - P_{2} } \right)\left( {P_{1} - v} \right)}}{{\xi \left( {P_{2} - v} \right) - \left( {P_{1} - v} \right)}} $$
(A25)

Proof for Proposition 5

With an increase in flexibility, the PS will have to offer a lower price to incentivize HA to buy more under discounts. However, PS cannot reduce the price below \(c_{i}\) which is the procurement price for PS under spot market. Hence, the limiting condition is given by \(c_{i} = P_{2}\). Thus,

$$ c_{i} = P_{1} - \frac{{\left( {P_{i} - P_{1} } \right)\left( {\xi - 1} \right)\left( {c - v} \right)}}{{c_{i} - v}} $$
(A26)

Rearranging,

$$ \xi = 1 + \frac{{\left( {P_{1} - c_{i} } \right)\left( {c_{i} - v} \right)}}{{\left( {P_{i} - P_{1} } \right)\left( {c - v} \right)}} $$
(A27)

Proof for Proposition 6

Both PS and HA to benefit from the usage of quantity discounts at price \(P_{2}\) only if net profit increases. Thus, \(\frac{d}{{dq_{2} }}\left( {\pi_{HA} } \right) > 0\) and \(\frac{d}{{dq_{2} }}\left( {\pi_{PS} } \right) > 0\) such that \(q_{2} \in \left( {0, q_{2}^{*} } \right)\). The profit function for the HA becomes,

$$ \begin{aligned} \pi_{HA} = & \left( {S - P_{1} } \right)\left( {1 + \alpha } \right)q_{QF} + \left( {S - P_{2} } \right)q_{2} \\ & - \left( {S - P_{1} } \right)\mathop \int \limits_{{\left( {1 - \omega } \right)q_{QF} + q_{2} }}^{{\left( {1 + \alpha } \right)q_{QF} + q_{2} }} F\left( X \right)dX \\ & - \left( {S - v} \right)\mathop \int \limits_{0}^{{\left( {1 - \omega } \right)q_{QF} + q_{2} }} F\left( X \right)dX \\ & + \left( {S - P_{i} } \right)\mathop \int \limits_{{\left( {1 + \alpha } \right)q_{QF} + q_{2} }}^{\infty } F\left( X \right)dX \\ \end{aligned} $$
(A28)

Taking FOC,

$$ \frac{d}{{dq_{2} }}\left( {\pi_{HA} } \right) = \left( {P_{i} - P_{2} } \right) - \left( {P_{i} - P_{1} } \right)F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right) - \left( {P_{1} - v} \right)F\left( {\left( {1 - \omega } \right)q_{QF} + q_{2} } \right) > 0 $$
(A29)

Rearranging,

$$ P_{2} < P_{i} \left( {1 - F\left( {\left( {1 + \alpha } \right)q_{QF} + Q_{2} } \right)} \right) + P_{1} \left[ {F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right) - F\left( {\left( {1 - \omega } \right)q_{QF} + q_{2} } \right)} \right] + vF\left( {\left( {1 - \omega } \right)q_{QF} + q_{2} } \right) $$
(A30)

Similarly,

$$ \pi_{PS} = \left( {P_{1} - c} \right)\left( {1 + \alpha } \right)q_{QF} + \left( {P_{2} - c} \right)q_{2} - \left( {P_{1} - v} \right)\mathop \int \limits_{{\left( {1 - \omega } \right)q_{QF} + q_{2} }}^{{\left( {1 + \alpha } \right)q_{QF} + q_{2} }} F\left( X \right)dX + \left( {P_{i} - c_{i} } \right)\mathop \int \limits_{{\left( {1 + \alpha } \right)q_{QF} + q_{2} }}^{\infty } F\left( X \right)dX $$
(A31)

Taking FOC, and rearranging,

$$ \frac{d}{{dq_{2} }}\left( {\pi_{PS} } \right) = \left( {P_{2} - c - P_{i} + c_{i} } \right) + \left( {P_{i} - c_{i} - P_{1} + v} \right)F\left( {\left( {1 + \alpha } \right)q_{QF} - q_{2} } \right) + \left( {P_{1} - v} \right)F\left( {\left( {1 - \omega } \right)q_{QF} - q_{2} } \right) > 0 $$
(A32)
$$ P_{2} > c + \left( {P_{1} - v} \right)\left[ {F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right) - F\left( {\left( {1 - \omega } \right)q_{QF} + q_{2} } \right)} \right] + \left( {P_{i} - c_{i} } \right)\left( {1 - F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right)} \right) $$
(A33)

Now,

$$ \frac{d}{{dq_{2} }}\left( {\pi_{HA} } \right) - \frac{d}{{dq_{2} }}\left( {\pi_{PS} } \right) = vF\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right) - c + c_{i} \left( {1 - F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right)} \right) $$
$$ \frac{d}{{dq_{2} }}\left( {\pi_{HA} } \right) - \frac{d}{{dq_{2} }}\left( {\pi_{PS} } \right) \ge \left( {c_{i} - c} \right) - \left( {c_{i} - v} \right)F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right) = 0 $$
(A34)

Combining Eqs. (A30) and (A33), we get the range between which \(P_{2}\) can operate. The maximum amount that PS should offer under extended quantity discount contract is given by equilibrium condition for equation (A34). Thus,

$$ F\left( {\left( {1 + \alpha } \right)q_{QF} + q_{2} } \right) = \frac{{c_{i} - c}}{{c_{i} - v}} = Q_{c}^{*} $$
$$ q_{2}^{*} = F^{ - 1} \left( {\frac{{c_{i} - c}}{{c_{i} - v}}} \right) - \left( {1 + \alpha } \right)q_{QF} $$
(A35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, L., Gurumurthy, A. Are quantity flexibility contracts with discounts in the presence of spot market procurement relevant for the humanitarian supply chain? An exploration. Ann Oper Res 315, 1775–1802 (2022). https://doi.org/10.1007/s10479-021-04058-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-04058-4

Keywords

Navigation