Skip to main content
Log in

Vehicles manufacturer's pricing strategies considering service level of car-sharing modes

  • S.I. : Business Analytics and Operations Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

As the era of sharing economy is coming, more and more auto manufacturers begin offering consumers cars for sales and for sharing simultaneously, but consumers have lower acceptance of sharing-cars in China. The key reason is that the availability of sharing-cars, as a service level, has much effect on consumers' time for searching a sharing-car. This study investigates the optimal pricing policies for sharing-cars and cars-for-sale, and reveals how service level affects the manufacturer's optimal decision and modes selection. We find that the hybrid mode should be adopted when consumers' unit time value is in an interval and service level is high. The combined optimal sharing price and sales price can be obtained and they are interralated with each other by key costs and service level in the hybrid mode. And the manufacturer should not introduce sharing-car programs when service level is less than a critical value. Furthermore, observations in numerical analysis show that the sales mode will be completely cannibalized if the sharing service level is much bigger and the optimal prices both first decreases and then increases with a hybrid mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abouee-Mehrizi, H., Baron, O., Berman, O., et al. (2021). Adoption of electric vehicles in car sharing market. Production and Operations Management, 30(1), 190–209.

    Article  Google Scholar 

  • Agrawal, V. V., & Bellos, I. (2016). The potential of servicing as a green business model. Management Science, 63(5), 1545–1562.

    Article  Google Scholar 

  • Bellos, I., Ferguson, M., & Toktay, L. B. (2017). The car sharing economy: Interaction of business model choice and product line design. Manufacturing & Service Operations Management, 19(2), 185–201.

    Article  Google Scholar 

  • Benjaafar, S., Bernhard, H., Courcoubetis, C., et al. (2021). Drivers, riders, and service providers: The impact of the sharing economy on mobility. Management Science. https://doi.org/10.1287/mnsc.2020.3909

    Article  Google Scholar 

  • Dai, B., & Nu, Y. (2020). Pricing and capacity allocation strategies: Implications for manufacturers with product sharing. Naval Research Logistics (NRL), 67, 201–222.

    Article  Google Scholar 

  • Enzi, M., Parragh, S. N., Pisinger, D., et al. (2021). Modeling and solving the multimodal car- and ride-sharing problem. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.11.046

    Article  Google Scholar 

  • Gilbert, S. M., Randhawa, R. S., & Sun, H. (2014). Optimal per-use rentals and sales of durable products and their distinct roles in price discrimination. Production and Operations Management, 23(3), 393–404.

    Article  Google Scholar 

  • Huang, K., An, K., Rich, J., & Ma, W. (2020). Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods. Transp Res E Logist Transp Rev, 142, 102081.

    Article  Google Scholar 

  • Jian, S., Liu, W., Wang, X., Yang, H., & Waller, S. T. (2020). On integrating carsharing and parking sharing services. Transportation Research Part B: Methodological, 142, 19–44.

    Article  Google Scholar 

  • Kim, J., Rasouli, S., & Timmermans, H. J. P. (2017). The effects of activity-travel context and individual attitudes on car-sharing decisions under travel time uncertainty: A hybrid choice modeling approach. Transportation Research Part d: Transport and Environment, 56, 189–202.

    Article  Google Scholar 

  • Li, L., Pantelidis, T., Chow, J. Y. J., & Jabari, S. E. (2021). A real-time dispatching strategy for shared automated electric vehicles with performance guarantees. Transportation Research Part e: Logistics and Transportation Review, 152, 102392.

    Article  Google Scholar 

  • Li, Q., Liao, F., Timmermans, H. J. P., Huang, H., & Zhou, J. (2018). Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model. Transportation Research Part b: Methodological, 107, 102–123.

    Article  Google Scholar 

  • Lin, X., Sun, C., Cao, B., Zhou, Y. W., & Chen, C. (2020). Should ride-sharing platforms cooperate with car-rental companies? Implications for consumer surplus and driver surplus. Omega, 102309.

  • Stokkink, P., & Geroliminis, N. (2021). Predictive user-based relocation through incentives in one-way car-sharing systems. Transportation Research Part b: Methodological, 149, 230–249.

    Article  Google Scholar 

  • Sun, L., Teunter, R. H., Babai, M. Z., & Hua, G. (2019). Optimal pricing for ride-sourcing platforms. European Journal of Operational Research, 278, 783–795.

    Article  Google Scholar 

  • Xu, M., Meng, Q., & Liu, Z. (2018). Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment. Transportation Research Part b: Methodological, 111, 60–82.

    Article  Google Scholar 

  • Yu, Y., Dong, Y., & Guo, X. (2018). Pricing for sales and per-use rental services with vertical differentiation. European Journal of Operational Research, 270(2), 586–598.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant quantity 72171186), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant quantity 2021JM-145), the Humanity and Sociology Science Foundation of Ministry of Education of China (Grant quantity 16XJA630003) and the Humanities and Social Science Talent Plan of Shaanxi Province (Grant quantity 91704160004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyao Hao or Shaohua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A1: Proof of Proposition 1

According to Eq. (4) and Eq. (5), we have

$$\tau (\theta )=\frac{v-{p}_{r}}{n\omega }{\lambda }_{1},$$
(A.1)

and

$$\tau \left(\theta \right)=\frac{{p}_{b}-{\varepsilon }_{b}-{\lambda }_{2}{p}_{r}}{n\omega }.$$
(A.2)

Based on the previous derivation, we have \(v-{p}_{r}>0\), we can know that the searching time \(\tau \left(\theta \right)\) is increasing in the marginal renter \({\lambda }_{1}\) and decreasing in the marginal buyer \({\lambda }_{2}\) when the prices are fixed from Equation (A-1)--(A-2).

Because \(\frac{\partial {\lambda }_{1}}{\partial \omega }=\frac{n\tau (\theta )}{v-{p}_{r}}>0\), and \(\frac{\partial {\lambda }_{2}}{\partial \omega }=\frac{-n\tau (\theta )}{{p}_{r}}<0\), \(\frac{\partial {Q}_{r}}{\partial \omega }<0\) and \(\frac{\partial {Q}_{b}}{\partial \omega }>0\).

1.2 A2: Proof of Proposition 2

(a) Taking the first derivative of \(\Pi ({\lambda }_{1})\) with respect to\({\lambda }_{1}\), we have \( \frac{{\partial \prod \lambda_{1} }}{{\partial \lambda_{1} }}{ = }\frac{kn\omega }{{2\theta \lambda_{1}^{2} }} + \frac{kn\omega }{{2\theta }} - v\lambda_{1} + \theta (c_{r} - \varepsilon_{r} )\). We find that the derivative has at most one zero. When \({\lambda }_{1}\)=0, the derivative is greater than zero. In order to ensure that the derivative has a point equal to zero, we must have: when \({\lambda }_{1}\)=1, the derivative is less than zero. Therefore, there is a unique \(0<{\lambda }_{1}^{*}<1\) optimizing Problem (11) when \({\theta }^{2}\left({c}_{r}-{\varepsilon }_{r}\right)+kn\omega -v\theta <0\), under the sharing strategy, we have maximum profit \({\pi }^{*}\) and optimal marginal renter\({\lambda }_{1}^{*}\). Therefore, the service level must satisfies\(\theta >\frac{-v+\sqrt{{v}^{2}+4kn\omega ({\varepsilon }_{r}-{c}_{r})}}{2({\varepsilon }_{r}-{c}_{r})}\).

(b) From Eq. (11), the first order condition is \(\frac{{\partial \Pi \left( {\lambda_{1}^{ * } } \right)}}{\partial \theta } = - \left( {c_{r} - \varepsilon_{r} } \right)\left( {1 - \lambda_{1}^{ * } } \right) + \frac{{kn\omega \left( {1 - \lambda_{1}^{ * 2} } \right)}}{{2\theta^{2} \lambda_{1}^{ * } }} = 0\). The second order condition is \(\frac{{\partial^{2} \Pi \left( {\lambda_{1}^{ * } } \right)}}{{\partial \theta^{2} }} = - \frac{{kn\omega \left( {1 - \lambda_{1}^{ * 2} } \right)}}{{\theta^{3} \lambda_{1}^{ * } }} < 0\). Hence, the optimal service level is \(\theta^{ * } = \sqrt {\frac{{kn\omega \left( {1 + \lambda_{1}^{ * } } \right)}}{{2\lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)}}}\).

Since the profit is a concave function of service level, let the profit in Eq. (11) equals to the opportunity cost \(\mathrm{C}\). If \(\frac{2C}{{1 - \lambda_{1}^{ * 2} }} < v < \frac{{2\left[ {C + \left( {c_{r} - \varepsilon_{r} } \right)\Upsilon_{11} } \right]}}{{1 - \lambda_{1}^{ * 2} }}\) and \(k < k^{\prime}\), we obtain the range of the service level \(\left[ {\underline {\theta } ,\overline{\theta }} \right]\) and \(0 < \underline {\theta } < \overline{\theta } < 1\), where

$$ \underline {\theta } = \frac{1}{4}\left[ {\frac{{2C + v\left( { - 1 + \lambda_{1}^{ * 2} } \right)}}{{\left( {c_{r} - \varepsilon_{r} } \right)\left( { - \Upsilon_{11} } \right)}} - \sqrt {\frac{{ - 8kn\omega \Upsilon_{11}^{2} \left( {\Upsilon_{12} } \right)\left( {c_{r} - \varepsilon_{r} } \right) + \lambda_{1}^{ * } \left[ {2c + v\left( { - 1 + \lambda_{1}^{ * 2} } \right)} \right]^{2} }}{{\left( {c_{r} - \varepsilon_{r} } \right)^{2} \Upsilon_{11}^{2} \lambda_{1}^{ * } }}} } \right] > 0. $$
(A.3)

and

$$ \overline{\theta } = \frac{1}{4}\left[ {\frac{{2C + v\left( { - 1 + \lambda_{1}^{ * 2} } \right)}}{{\left( {c_{r} - \varepsilon_{r} } \right)\left( { - \Upsilon_{11} } \right)}} + \sqrt {\frac{{ - 8kn\omega \Upsilon_{11}^{2} \Upsilon_{12} \left( {c_{r} - \varepsilon_{r} } \right) + \lambda_{1}^{ * } \left[ {2c + v\left( { - 1 + \lambda_{1}^{ * 2} } \right)} \right]^{2} }}{{\left( {c_{r} - \varepsilon_{r} } \right)^{2} \Upsilon_{11}^{2} \lambda_{1}^{ * } }}} } \right]. $$
(A.4)

1.3 A3: Proof of Corollary 1

$$ \left( {\text{a}} \right)\quad \frac{{\partial \theta^{ * } }}{\partial \omega } = \frac{{kn\left( {1 + \lambda_{1}^{ * } } \right)}}{{2\sqrt 2 \left( {c_{r} - \varepsilon_{r} } \right)\lambda_{1}^{ * } \sqrt {\frac{{kn\omega \left( {1 + \lambda_{1}^{ * } } \right)}}{{\lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)}}} }} > 0. $$
(A.5)
$$ \left( {\text{b}} \right)\quad \frac{{\partial \Pi^{ * } }}{\partial \omega } = \frac{{kn\left( { - 1 + \lambda_{1}^{ * 2} } \right)}}{{\sqrt 2 \lambda_{1}^{ * } \sqrt {\frac{{kn\omega \left( {1 + \lambda_{1}^{ * } } \right)}}{{\lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)}}} }} < 0. $$
(A.6)

1.4 A4: Proof of Proposition 3

Taking the first derivative of \(\Pi ({\lambda }_{2})\) with respect to \({\lambda }_{2}\), we have \({\lambda }_{2}^{*}=\frac{1}{2}-\frac{{\varepsilon }_{b}-{c}_{b}}{2v}\), and substitute into the Eq. (5), we receive the optimal sales price \({{p}_{b}}^{*}=\frac{1}{2}(v+{\varepsilon }_{b}+{c}_{b})\), substituting into the Eq. (12), we have \({\Pi }^{*}=\frac{{{(v+\varepsilon }_{b}-{c}_{b})}^{2}}{4v}\).

1.5 A5: Proof of Proposition 4

  1. (a)

    In this case, the manufacturer's abandonment of any one mode will cause his profits to fall. First, taking the first derivative of \(\Pi ({\lambda }_{1},{\lambda }_{2})\) with respect to \({\lambda }_{2}\), we have:

    $$ \frac{{\partial \prod (\lambda_{1} ,\lambda_{2} )}}{{\partial \lambda_{2} }} = \frac{kn\omega }{{\theta \lambda_{1} }}(\lambda_{2} - {1}) + \theta (\varepsilon_{r} - c_{r} ) + (c_{b} - \varepsilon_{b} ){ + (}1 - \lambda_{2} )v - \frac{kn\omega }{\theta }. $$
    (A.7)

Then, taking the first derivative of \(\Pi ({\lambda }_{1},{\lambda }_{2})\) with respect to \({\lambda }_{1}\), we have:

$$ \frac{{\partial \prod (\lambda_{1} ,\lambda_{2} )}}{{\partial \lambda_{1} }}{ = }\frac{kn\omega }{{\theta \lambda_{1}^{2} }}\lambda_{2} - \frac{kn\omega }{{2\theta \lambda_{1}^{2} }}\lambda_{2}^{2} + \frac{kn\omega }{{2\theta }} - v\lambda_{1} + \theta (c_{r} - \varepsilon_{r} ). $$
(A.8)

Furthermore, if

$$ \begin{gathered} \frac{{\partial^{2} \Pi \left( {\lambda_{1} ,\lambda_{2} } \right)}}{{\partial \lambda_{1}^{2} }} \cdot \frac{{\partial^{2} \Pi \left( {\lambda_{1} ,\lambda_{2} } \right)}}{{\partial \lambda_{2}^{2} }} - \left( {\frac{{\partial^{2} \Pi \left( {\lambda_{1} ,\lambda_{2} } \right)}}{{\partial \lambda_{1} \partial \lambda_{2} }}} \right)^{2} \hfill \\ = \left( {\frac{{ - v\theta \lambda_{1}^{3} + kn\left( {\lambda_{2} - 2} \right)\lambda_{2} \omega }}{{\theta \lambda_{1}^{3} }}} \right) \cdot \left( { - v + \frac{kn\omega }{{\theta \lambda_{1} }}} \right) - \left( {\frac{{kn\left( {2 - 2\lambda_{2} } \right)\omega }}{{2\theta \lambda_{1}^{2} }}} \right)^{2} > 0, \hfill \\ \end{gathered} $$
(A.9)

that is, \(\theta < \frac{1}{2}\left( {G - H} \right)\) or \(\theta > \frac{1}{2}\left( {G + H} \right)\), a manufacturer can obtain the optimal marginal renter \({\uplambda }_{1}^{*}\) and \({\uplambda }_{2}^{*}\) simultaneously (where \(G{ = }\frac{kn}{{v\lambda_{1}^{3} }}\left( {\lambda_{1}^{2} + \left( {\lambda_{2} - 2} \right)\lambda_{2} \omega } \right)\) and \(H{ = }\frac{kn\omega }{{v\lambda_{1}^{3} }}\sqrt {\left( {\lambda_{1}^{2} + \left( {\lambda_{2} - 2} \right)^{2} } \right)\left( {\lambda_{1}^{2} + \lambda_{2}^{2} } \right)}\)).

Furthermore, if \(G - H < 0\), \(\omega > \frac{{\lambda_{1}^{2} }}{{\lambda_{2} \left( {2 - \lambda_{2} } \right) + \sqrt M }}\), where \(M = \left( {\lambda_{1}^{2} + \left( {\lambda_{2} - 2} \right)^{2} } \right)\left( {\lambda_{1}^{2} + \lambda_{2}^{2} } \right)\). Sinceθ \(\in\)(0, 1), \(\frac{1}{2}\left( {G + H} \right)\) has to be less than 1. Hence, \(\omega < \frac{{{{2v\lambda_{1}^{3} } \mathord{\left/ {\vphantom {{2v\lambda_{1}^{3} } {kn}}} \right. \kern-\nulldelimiterspace} {kn}} - \lambda_{1}^{2} }}{{\lambda_{2} \left( {\lambda_{2} - 2} \right) + \sqrt M }}\). Therefore, when \(\frac{{\lambda_{1}^{2} }}{{\lambda_{2} \left( {2 - \lambda_{2} } \right) + \sqrt M }} < \omega < \frac{{{{\left( {2v\lambda_{1}^{3} } \right)} \mathord{\left/ {\vphantom {{\left( {2v\lambda_{1}^{3} } \right)} {\left( {kn} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {kn} \right)}} - \lambda_{1}^{2} }}{{\lambda_{2} \left( {\lambda_{2} - 2} \right) + \sqrt M }}\), i.e., consumers’ unit time value is in an interval, a manufacturer can obtain the optimal marginal renter \(\lambda_{1}^{ * }\) and \(\lambda_{2}^{ * }\) simultaneously if \(\theta > \frac{1}{2}\left( {G + H} \right)\).

(b) From (a), we know that the optimal marginal renter \({\lambda }_{1}^{*}\) and \({\lambda }_{2}^{*}\) exist. And from Eq. (4) and (5), we obtain that the combined optimal price \(p_{b}^{ * }\) and \(p_{r}^{ * }\) exist. Furthermore, through the first order condition, we have \(p_{b}^{ * } = p_{r}^{ * } + c_{b} + \theta \left( {\varepsilon_{r} - c_{r} } \right)\).

(c) From Eq. (10), the first order condition is \(\frac{{\partial \Pi \left( {\lambda_{1}^{ * } ,\lambda_{2}^{ * } } \right)}}{\partial \theta } = \frac{{2\left( {c_{r} - \varepsilon_{r} } \right)\theta^{2} \left( { - 1 + \lambda_{1}^{ * } } \right)\lambda_{1}^{ * } - kn\omega \left[ { - 1 + \lambda_{1}^{ * 2} - 2\left( { - 1 + \lambda_{2}^{ * } } \right)\left( {\lambda_{1}^{ * } - \lambda_{2}^{ * } } \right)} \right]}}{{2\theta^{2} \lambda_{1}^{ * } }} = 0\). The second order condition is \(\frac{{\partial^{2} \Pi \left( {\lambda_{1}^{ * } ,\lambda_{2}^{ * } } \right)}}{{\partial \theta^{2} }} = \frac{{kn\omega \left[ { - 1 + \lambda_{1}^{ * 2} + 2\left( {1 - \lambda_{2}^{ * } } \right)\left( {\lambda_{1}^{ * } - \lambda_{2}^{ * } } \right)} \right]}}{{\theta^{3} \lambda_{1}^{ * } }} < 0\). Hence, the optimal service level is \(\theta^{\prime * } = \sqrt {\frac{{kn\omega \left( { - 1 + \lambda_{1}^{ * 2} + 2\lambda_{1}^{ * } \Upsilon_{11} - 2\Upsilon_{21} \lambda_{2}^{ * } } \right)}}{{2\lambda_{1}^{ * } \left( {\varepsilon_{r} - c_{r} } \right)\Upsilon_{11} }}}\).

1.6 A6: Proof of Corollary 2

  1. (a)

    \(\frac{{\partial \theta^{\prime * } }}{\partial \omega } = \frac{1}{2\sqrt 2 \omega }\sqrt {\frac{{kn\omega \left[ {1 - \lambda_{1}^{ * 2} + 2\left( {1 - \lambda_{2}^{ * } } \right)\left( {\lambda_{2}^{ * } - \lambda_{1}^{ * } } \right)} \right]}}{{\lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)\left( {1 - \lambda_{1}^{ * } } \right)}}} > 0\),

Given \(\lambda_{1}^{ * }\), \(\frac{{\partial \theta^{\prime * } }}{{\partial \lambda_{2}^{ * } }} = \frac{{kn\omega \left( {1 + \lambda_{1}^{ * } - 2\lambda_{2}^{ * } } \right)}}{{\sqrt 2 \lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)\left( {1 - \lambda_{1}^{ * } } \right)\sqrt {\frac{{kn\omega \left[ {1 - \lambda_{1}^{ * 2} + 2\left( {1 - \lambda_{2}^{ * } } \right)\left( {\lambda_{2}^{ * } - \lambda_{1}^{ * } } \right)} \right]}}{{\lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)\left( {1 - \lambda_{1}^{ * } } \right)}}} }}\).

If \(1 + \lambda_{1}^{ * } - 2\lambda_{2}^{ * } = \left( {1 - \lambda_{2}^{ * } } \right) - \left( {\lambda_{2}^{ * } - \lambda_{1}^{ * } } \right) > 0\), \(\frac{{\partial \theta^{\prime * } }}{{\partial \lambda_{2}^{ * } }} > 0\);

if \(1 + \lambda_{1}^{ * } - 2\lambda_{2}^{ * } = \left( {1 - \lambda_{2}^{ * } } \right) - \left( {\lambda_{2}^{ * } - \lambda_{1}^{ * } } \right) < 0\), \(\frac{{\partial \theta^{\prime * } }}{{\partial \lambda_{2}^{ * } }} < 0\).

  1. (c)

    \(\frac{{\partial \Pi^{ * } }}{\partial \omega } = \frac{{\left( {c_{r} - \varepsilon_{r} } \right)\left( { - 1 + \lambda_{1}^{ * } } \right)\sqrt {\frac{{kn\omega \left[ {1 - \lambda_{1}^{ * 2} + 2\left( {1 - \lambda_{2}^{ * } } \right)\left( {\lambda_{2}^{ * } - \lambda_{1}^{ * } } \right)} \right]}}{{\lambda_{1}^{ * } \left( {c_{r} - \varepsilon_{r} } \right)\left( {1 - \lambda_{1}^{ * } } \right)}}} }}{\sqrt 2 \omega } < 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Hao, L., Chen, S. et al. Vehicles manufacturer's pricing strategies considering service level of car-sharing modes. Ann Oper Res 315, 1755–1773 (2022). https://doi.org/10.1007/s10479-022-04569-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-022-04569-8

Keywords

Navigation