Skip to main content
Log in

Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present study aims to perform computational simulations of two-dimensional (2D) hemodynamics of unsteady blood flow via an inclined overlapping stenosed artery employing the Casson fluid model to discuss the hemorheological properties in the arterial region. A uniform magnetic field is applied to the blood flow in the radial direction as the magneto-hemodynamics effect is considered. The entropy generation is discussed using the second law of thermodynamics. The influence of different shape parameters is explored, which are assumed to have varied shapes (spherical, brick, cylindrical, platelet, and blade). The Crank-Nicolson scheme solves the equations and boundary conditions governing the flow. For a given critical height of the stenosis, the key hemodynamic variables such as velocity, wall shear stress (WSS), temperature, flow rate, and heat transfer coefficient are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(r_1^*\) :

radial direction

Re :

Reynolds number

\(z_1^*\) :

axial direction

Gr :

Grashof number

\(t_1^*\) :

time

Ec :

Eckert number

\(u_1^*\) :

velocity component in radial direction

Pr :

Prandtl number

Br :

Brinkman number

\(w_1^*\) :

velocity component in axial direction

U 0 :

reference velocity

Q 1 :

flow rate

R :

radius of artery in stenotic region

q w :

heat transfer coefficient

R 0 :

radius of artery in non-stenotic region

N s :

entropy generation number

g :

gravity

Be :

Bejan number

\(h\left( {r_1^*} \right)\) :

maximum hematocrit at artery’s center

\(\widetilde{{T^*}}\) :

temperature of base fluid

ω :

temperature difference parameter

\(\widetilde{{T_{\rm{1}}}^*}\) :

reference temperature

\(\widetilde\theta \) :

non-dimensional temperature

ρ :

density

\(\widetilde{T_{\rm{w}}^*}\) :

temperature at wall

ϕ 1 :

volume fraction of Au-nanoparticles

B 0 :

uniform magnetic field

ϕ 2 :

volume fraction of Cu-nanoparticles

\(\widetilde{c_p^*}\) :

specific heat at constant pressure

γ :

thermal expansion coefficient

E g :

volumetric entropy generation

β :

Casson fluid parameter

k f :

thermal conductivity

λ :

resistance impedance

\(p_1^*\) :

pressure

μ f :

blood’s viscosity

ω s :

wall slip velocity

μ 0 :

coefficient of viscosity plasma

B 1 :

pressure gradient parameter

δ :

stenosis depth

d :

location of stenosis

σ :

electrical conductivity

L 0 :

length of stenosis

τ w :

shear stress at wall

M :

magnetic number

ξ :

inclination parameter.

References

  1. ZAMAN, A., ALI, N., and SAJID, M. Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery. Mathematics and Computers in Simulation, 134, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. ALI, A., HUSSAIN, M., ANWAR, M. S., and INC, M. Mathematical modeling and parametric investigation of blood flow through a stenosis artery. Applied Mathematics and Mechanics (English Edition), 42(11), 1675–1684 (2021) https://doi.org/10.1007/s10483-021-2791-8

    Article  MathSciNet  MATH  Google Scholar 

  3. SIVA, T., JANGILI, S., and KUMBHAKAR, B. Heat transfer analysis of MHD and electroosmotic flow of non-Newtonian fluid in a rotating microfluidic channel: an exact solution. Applied Mathematics and Mechanics (English Edition), 42(7), 1047–1062 (2021) https://doi.org/10.1007/s10483-021-2752-6

    Article  MathSciNet  MATH  Google Scholar 

  4. ZHANG, X., LUO, M., TAN, P., ZHENG, L., and SHU, C. Magnetic nanoparticle drug targeting to patient-specific atherosclerosis: effects of magnetic field intensity and configuration. Applied Mathematics and Mechanics (English Edition), 41(2), 349–360 (2020) https://doi.org/10.1007/s10483-020-2566-9

    Article  MathSciNet  Google Scholar 

  5. DAS, S., PAL, T. K., and JANA, R. N. Outlining impact of hybrid composition of nanoparticles suspended in blood flowing in an inclined stenosed artery under magnetic field orientation. BioNanoScience, 11, 99–11 (2021)

    Article  Google Scholar 

  6. ZHANG, X., WANG, E., MA, L., SHU, C., and ZHENG, L. Analysis of hemodynamics and heat transfer of nanoparticle-injected atherosclerotic patient: considering the drag force and slip between phases of different particle shapes and volume fractions. International Journal of Thermal Sciences, 159, 106637 (2021)

    Article  Google Scholar 

  7. BASHA, H. T., RAJAGOPAL, K., AHAMMAD, N. A., SATHISH, S., and GUNAKALA, S. R. Finite difference computation of Au-Cu/magneto-bio-hybrid nanofluid flow in an inclined uneven stenosis artery. Complexity, 2022, 2078372 (2022)

    Article  Google Scholar 

  8. CHAKRAVARTY, S. and MANDAL, P. K. Numerical simulation of Casson fluid flow through differently shaped arterial stenoses. Zeitschrift für Angewandte Mathematik und Physik, 65, 767–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. DEBNATH, S., SAHA, A. K., MAZUMDER, B. S., and ROY, A. K. Transport of a reactive solute in a pulsatile non-Newtonian liquid flowing through an annular pipe. Journal of Engineering Mathematics, 116, 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. ALI, A., FAROOQ, H., ABBAS, Z., BUKHARI, Z., and FATIMA, A. Impact of Lorentz force on the pulsatile flow of a non-Newtonian Casson fluid in a constricted channel using Darcy’s law: a numerical study. Scientific Reports, 10, 1–15 (2020)

    Article  Google Scholar 

  11. DAS, P., SARIFUDDIN, R. J., and MANDAL, P. K. Solute dispersion in transient Casson fluid flow through stenotic tube with exchange between phases. Physics of Fluids, 33, 061907 (2021)

    Article  Google Scholar 

  12. KUMAWAT, C., SHARMA, B. K., and MEKHEIMER, K. S. Mathematical analysis of two-phase blood flow through a stenosed curved artery with hematocrit and temperature dependent viscosity. Physica Scripta, 96, 125277 (2021)

    Article  Google Scholar 

  13. CONNOR, E. E., MWAMUKA, J., GOLE, A., MURPHY, C. J., and WYATT, M. D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 1, 325–327 (2005)

    Article  Google Scholar 

  14. JIANG, Y., REYNOLDS, C., XIAO, C., FENG, W., ZHOU, Z., RODRIGUEZ, W., TYAGI, S. C., EATON, J. W., SAARI, J. T., and KANG, Y. J. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. The Journal of Experimental Medicine, 204, 657–666 (2007)

    Article  Google Scholar 

  15. GHOSH, P., HAN, G., DE, M., KIM, C. K., and ROTELLO, V. M. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307–1315 (2008)

    Article  Google Scholar 

  16. GENTILE, F., FERRARI, M., and DECUZZI, P. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Annals of Biomedical Engineering, 36, 254–261 (2008)

    Article  Google Scholar 

  17. IJAZ, S. and NADEEM, S. Slip examination on the wall of tapered stenosed artery with emerging application of nanoparticles. International Journal of Thermal Sciences, 109, 401–412 (2016)

    Article  Google Scholar 

  18. BEJAN, A. Second law analysis in heat transfer. Energy, 5, 720–732 (1980)

    Article  Google Scholar 

  19. BEJAN, A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 79, 1191–1218 (1996)

    Article  Google Scholar 

  20. AKBAR, N. S. and BUTT, A. W. Entropy generation analysis in convective ferromagnetic nano blood flow through a composite stenosed arteries with permeable wall. Communications in Theoretical Physics, 67, 554 (2017)

    Article  MathSciNet  Google Scholar 

  21. MEKHEIMER, K. S., ZAHER, A. Z., and ABDELLATEEF, A. I. Entropy hemodynamics particle-fluid suspension model through eccentric catheterization for time-variant stenotic arterial wall: catheter injection. International Journal of Geometric Methods in Modern Physics, 16, 1950164 (2019)

    Article  MathSciNet  Google Scholar 

  22. ZHANG, L., BHATTI, M. M., MARIN, M., and MEKHEIMER, K. S. Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles. Entropy, 22, 1070 (2020)

    Article  Google Scholar 

  23. ZIDAN, A. M., MCCASH, L. B., AKHTAR, S., SALEEM, A., ISSAKHOV, A., and NADEEM, S. Entropy generation for the blood flow in an artery with multiple stenosis having a catheter. Alexandria Engineering Journal, 60, 5741–5748 (2021)

    Article  Google Scholar 

  24. ROJA, A., GIREESHA, B. J., and NAGARAJA, B. Irreversibility investigation of Casson fluid flow in an inclined channel subject to a Darcy-Forchheimer porous medium: a numerical study. Applied Mathematics and Mechanics (English Edition), 42(1), 95–108 (2021) https://doi.org/10.1007/s10483-021-2681-9

    Article  MathSciNet  Google Scholar 

  25. BURTON, A. C. Physiology and Biophysics of the Circulation, Year Book Medical Publishers, Chicago (1965)

    Google Scholar 

  26. NA, T. Y. Computational Methods in Engineering Boundary Value Problems, Elsevier Science & Technology, New York (1979)

    MATH  Google Scholar 

  27. REVNIC, C., GROSAN, T., SHEREMET, M., and POP, I. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating. Applied Mathematics and Mechanics (English Edition), 41(9), 1345–1358 (2020) https://doi.org/10.1007/s10483-020-2652-8

    Article  MathSciNet  Google Scholar 

  28. ABO-ELKHAIR, R. E., BHATTI, M. M., and MEKHEIMER, K. S. Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au Cu nanoparticles) with moderate Reynolds number: an expanding horizon. International Communications in Heat and Mass Transfer, 123, 105228, (2021)

    Article  Google Scholar 

  29. XU, H. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition. Applied Mathematics and Mechanics (English Edition), 43(1), 113–126 (2022) https://doi.org/10.1007/s10483-021-2801-6

    Article  MathSciNet  MATH  Google Scholar 

  30. ZHANG, B., GU, J., QIAN, M., NIU, L., ZHOU, H., and GHISTA, D. Correlation between quantitative analysis of wall shear stress and intima-media thickness in atherosclerosis development in carotid arteries. Biomedical Engineering Online, 16, 1–17 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Additional information

Citation: SHARMA, B. K., GANDHI, R., ABBAS, T., and BHATTI, M. M. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery. Applied Mathematics and Mechanics (English Edition), 44(3), 459–476 (2023) https://doi.org/10.1007/s10483-023-2961-7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.K., Gandhi, R., Abbas, T. et al. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery. Appl. Math. Mech.-Engl. Ed. 44, 459–476 (2023). https://doi.org/10.1007/s10483-023-2961-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2961-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation