Skip to main content
Log in

Optimal controller placement in large scale software defined networks based on modified NSGA-II

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Software Defined Network (SDN) is an emerging approach to overcome challenges of traditional networks. One particularly important issue in SDN architectures is that of controller placement problem (CPP), i.e., deploying a desired number of controllers within a network while some possibly conflicting requirements have to be fulfilled. A single optimal placement may not be possible and decision makers need to seek for an appropriate trade-off among the metrics. Although an exhaustive evaluation of all possible placements can be practically performed well for small and medium-sized networks, regarding realistic time and resource restrictions, heuristic approaches are required for large-scale networks. Hence, a heuristic called Multi-Start Hybrid NSGA-II (MHNSGA-II) is introduced which yields faster computation times and needs reasonable memory to perform. The obtained results on several topologies extracted from Internet Topology Zoo showed the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alvizu R, Maier G, Kukreja N, Pattavina A, Morro R, Capello A, Cavazzoni C (2017) Comprehensive survey on T-SDN: Software-defined networking for transport networks. IEEE Communications Surveys & Tutorials

  2. Michel O, Keller E (2017) SDN in wide-area networks: a survey. In: 2017 Fourth international conference on software defined systems (SDS). IEEE, Valencia, pp 37–42

  3. Tootoonchian A, Ganjali Y (2010) Proceedings of the 2010 internet network management conference on research on enterprise networking, pp 3–3

  4. Lange S, Gebert S, Zinner T, Tran-Gia P, Hock D, Jarschel M, Hoffmann M (2015) Heuristic approaches to the controller placement problem in large scale SDN networks. IEEE Trans Netw Serv Manag 12 (1):4–17

    Article  Google Scholar 

  5. Heller B, Sherwood R, McKeown N (2012) The controller placement problem. In: Proceedings of the first workshop on Hot topics in software defined networks. ACM, New York, pp 7–12

  6. Hock D, Gebert S, Hartmann M, Zinner T, Tran-Gia P (2014) POCO-framework for Pareto-optimal resilient controller placement in SDN-based core networks. In: Network operations and management symposium (NOMS), 2014 IEEE. IEEE, Krakow, pp 1–2

  7. Killi BPR, Rao SV (2017) capacitated next controller placement in software defined networks. IEEE Transactions on Network and Service Management

  8. Ye X, Cheng G, Luo X (2017) Maximizing SDN control resource utilization via switch migration. Comput Netw 126:69–80

    Article  Google Scholar 

  9. Hock D, Hartmann M, Gebert S, Zinner T, Tran-Gia P (2014) POCO-PLC: enabling dynamic pareto-optimal resilient controller placement in SDN networks. In: 2014 IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE, Piscataway, pp 115–116

  10. Dixit A, Hao F, Mukherjee S, Lakshman TV, Kompella R (2013) Towards an elastic distributed SDN controller. ACM SIGCOMM Computer Communication Review 43(4):7–12

    Article  Google Scholar 

  11. Yao G, Bi J, Li Y, Guo L (2014) On the capacitated controller placement problem in software defined networks. IEEE Commun Lett 18(8):1339–1342

    Article  Google Scholar 

  12. Hu Y, Wendong W, Gong X, Que X, Shiduan C (2013) Reliability-aware controller placement for software-defined networks. In: 2013 IFIP/IEEE international symposium on integrated network management (IM 2013). IEEE, Ghent, pp 672–675

  13. Bhattacharya U, Rao JR, Tiwari RN (1992) Fuzzy multi-criteria facility location problem. Fuzzy Sets Syst 51(3):277–287

    Article  MathSciNet  MATH  Google Scholar 

  14. Rahmati SHA, Hajipour V, Niaki STA (2013) A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Appl Soft Comput 13(4):1728–1740

    Article  Google Scholar 

  15. Branke J, Deb K, Miettinen K, Slowiński R (eds) (2008) Multiobjective optimization: interactive and evolutionary approaches, vol 5252. Springer, Berlin

  16. Coello CAC (2005) Recent trends in evolutionary multiobjective optimization. In: Evolutionary multiobjective optimization. Springer, London, pp 7–32

  17. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  18. Knight S, Nguyen HX, Falkner N, Bowden R, Roughan M (2011) The internet topology zoo0. IEEE J Sel Areas Commun 29(9):1765–1775

    Article  Google Scholar 

  19. Garcia-Najera A, Bullinaria JA (2009) Bi-objective optimization for the vehicle routing problem with time windows: Using route similarity to enhance performance. In: Evolutionary multi-criterion optimization. Springer, Berlin, pp 275–289

  20. Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  21. Eiben AE, Smith JE (2003) Introduction to evolutionary computing, vol 53. Heidelberg, Springer

    Book  MATH  Google Scholar 

  22. Garcia-Najera A, Bullinaria JA (2011) An improved multi-objective evolutionary algorithm for the vehicle routing problem with time windows. Comput Oper Res 38(1):287–300

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang L, Zheng L, Cao H, Huang N (2016) An improved multi-objective genetic algorithm for heterogeneous coverage RFID network planning. Int J Prod Res 54(8):2227–2240

    Article  Google Scholar 

  24. Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control Cybern 29(3):653–684

    MathSciNet  MATH  Google Scholar 

  25. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken

    Book  MATH  Google Scholar 

  26. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

    Article  Google Scholar 

  27. Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evol Comput 16(3):442– 446

    Article  Google Scholar 

  28. Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performan ce assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117– 132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Jalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalili, A., Keshtgari, M. & Akbari, R. Optimal controller placement in large scale software defined networks based on modified NSGA-II. Appl Intell 48, 2809–2823 (2018). https://doi.org/10.1007/s10489-017-1119-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-017-1119-5

Keywords

Navigation