Skip to main content
Log in

Simulation of a Large-Eddy-Break-up Device (LEBU) in a Moderate Reynolds Number Turbulent Boundary Layer

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A well-resolved large eddy simulation (LES) of a large-eddy break-up (LEBU) device in a spatially evolving turbulent boundary layer is performed with, Reynolds number, based on free-stream velocity and momentum-loss thickness, of R e θ ≈ 4300. The implementation of the LEBU is via an immersed boundary method. The LEBU is positioned at a wall-normal distance of 0.8 δ (δ denoting the local boundary layer thickness at the location of the LEBU) from the wall. The LEBU acts to delay the growth of the turbulent boundary layer and produces global skin friction reduction beyond 180δ downstream of the LEBU, with a peak local skin friction reduction of approximately 12 %. However, no net drag reduction is found when accounting for the device drag of the LEBU in accordance with the towing tank experiments by Sahlin et al. (Phys. Fluids 31, 2814, 1988). Further investigation is performed on the interactions of high and low momentum bulges with the LEBU and the corresponding output is analysed, showing a ‘break-up’ of these large momentum bulges downstream of the LEBU. In addition, results from the spanwise energy spectra show consistent reduction in energy at spanwise length scales for \(\lambda _{z}^{+} > 1000\) independent of streamwise and wall-normal location when compared to the corresponding turbulent boundary layer without LEBU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Townsend, A.A.: The structure of turbulent shear flow. Cambridge University Press, Cambridge (1956)

    MATH  Google Scholar 

  2. Kline, S.J., Reynolds, W.C., Shrub, F.A., Rundstadler, P.W.: J. Fluid Mech. 30, 741 (1967)

    Article  Google Scholar 

  3. Brown, G.L., Thomas, A.S.W.: Phys. Fluids 20, 243 (1977)

    Article  Google Scholar 

  4. Corke, T.C., Guezennec, Y., Nagib, H.M.: Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures. Technical Report. 3444 NASA CR (1981)

  5. Savill, A.M., Mumford, J.C.: J. Fluid Mech. 191, 389 (1988)

    Article  Google Scholar 

  6. Corke, T.C., Nagib, H.M., Guezennec, Y.: A new view on origin, role and manipulation of large scales in turbulent boundary layers. Technical Report 1165861 NASA CR (1982)

  7. Tardu, S., Binder, G.: Recent developments in turbulence management pp. 147–160 (1991)

  8. Walsh, M., Anders, J.J.B.: Appl. Sci. Res. 46, 255 (1989)

    Article  Google Scholar 

  9. Sahlin, A., Johansson, A.V., Alfredsson, P.H.: Phys. Fluids 31, 2814 (1988)

    Article  Google Scholar 

  10. Kornilov, V.I.: Thermophys. Aeromech. 17, 249 (2010)

    Article  Google Scholar 

  11. Park, H., An, N.H., Hutchins, N., Choi, K.S., Chun, H.H., Lee, I.: J. Mar. Sci. Technol. 16, 390 (2011)

    Article  Google Scholar 

  12. Smith, A.E., Gordeyev, S.: AIAA Paper, 2014–0321 (2014)

  13. Inaoka, K., Suzuki, K.: Turbulent shear flows 9, pp 365–382. Springer-Verlag, Berlin Heidelberg (1995)

    Book  Google Scholar 

  14. Hutchins, N., Marusic, I.: J. Fluid Mech. 579, 1 (2007)

    Article  Google Scholar 

  15. Mathis, R., Hutchins, N., Marusic, I.: J. Fluid Mech. 628, 311 (2009)

    Article  Google Scholar 

  16. Spalart, P.R., Streletsb, M., Travin, A.: Int. J. HeatFluid Flow 27, 902 (2006)

    Article  Google Scholar 

  17. Klein, H., Friedrich, R.: Turbul. Control Passive Means 4, 41 (1990)

    Article  Google Scholar 

  18. Schlatter, P., Örlü, R.: J. Fluid Mech. 659, 116 (2010)

    Article  Google Scholar 

  19. Eitel-Amor, G., Örlü, R., Schlatter, P.: Int. J. HeatFluid Flow 47, 57 (2014)

    Article  Google Scholar 

  20. Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: Simson – a pseudo-spectral solver for incompressible boundary layer flows. Technical Report 7, Technical Report TRITA-MEK (2007)

  21. Schlatter, P., Stolz, S., Kleiser, L.: Int. J. HeatFluid Flow 25, 549 (2004)

    Article  Google Scholar 

  22. Schlatter, P., Örlü, R.: J. Fluid Mech. 710, 5 (2012)

    Article  Google Scholar 

  23. Brynjell-Rahkola, M., Schlatter, P., Hanifi, A., Henningson, D.S.: . In: 8th International Symposium on Turbulence and Shear Flow Phenomena (2013)

  24. Anders, J.B., Watson, R.: AIAA Shear Flow Control Conf. 85, 0520 (1985)

    Google Scholar 

  25. Iuso, G., Onorato, M.: Meccanica 30, 359 (1995)

    Article  Google Scholar 

  26. Plesniak, M.W., Nagib, H.M.: AIAA Shear Flow Control Conf. 85, 0518 (1985)

    Google Scholar 

  27. Lemay, J., Delville, J., Bonnet, J.P.: Exp. Fluids 9, 301 (1990)

    Article  Google Scholar 

  28. Lemay, J., Savill, A.M., Bonnet, J.P., Delville, J.: Turbulent shear flows 6, pp 179–193. Springer-Verlag, Berlin Heidelberg (1989)

    Book  Google Scholar 

  29. Chauhan, K., Philip, J., de Silva, C., Hutchins, N., Marusic, I.: J. Fluid Mech. 742, 119 (2014)

    Article  Google Scholar 

  30. Lynn, T.B., Bechert, D.W., Gerich, D.A.: Exp. Fluids 19, 405 (2004)

    Google Scholar 

Download references

Acknowledgments

This research was undertaken with the assistance of resources provided at the NCI NF through the National Computational Merit Allocation Scheme supported by the Australian Government. Computer time was also provided by SNIC (Swedish National Infrastructure for Computing). The authors also acknowledge the financial support of the Australian Research Council as well as the Lundeqvist foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chin.

Appendix

Appendix

The smoothing function (χ) used to implement the LEBU is as shown below in Fig. 13. Inside the blue region where the LEBU is located, χ = 0. Within the yellow region are functions consisting of a cosine smoothing equation as indicated by the equation numbers.

$$ \begin{array}{l} \chi=1 \left\{ \begin{array}{c} x \le X_{c} + 0.5 L_{LEBU} \\ x \ge X_{c} - 0.5 L_{LEBU} \\ y \le Y_{c} + 0.5 T_{LEBU} \\ y \ge Y_{c} - 0.5 T_{LEBU} \end{array} \right. \end{array} $$
(7)
$$ \begin{array}{l} \chi=0 \left\{ \begin{array}{c} x \le X_{c} - (0.5 L_{LEBU} +0.2) \\ x \ge X_{c} + (0.5 L_{LEBU} +0.2) \\ y \le Y_{c} - (0.5 T_{LEBU} +0.2) \\ y \ge Y_{c} + (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(8)
$$ \begin{array}{l} \chi=-{\cos} \left( \frac{ y-Y_{c}+0.5T_{LEBU}+0.2}{0.2}\pi \right)+0.5 \left\{ \begin{array}{c} x \le X_{c} + (0.5 L_{LEBU} ) \\ x \ge X_{c} - (0.5 L_{LEBU} ) \\ y \le Y_{c} - (0.5 T_{LEBU} ) \\ y \ge Y_{c} - (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(9)
$$ \begin{array}{l} \chi={\cos} \left( \frac{ y-Y_{c}-0.5T_{LEBU}}{0.2}\pi \right)+0.5 \left\{ \begin{array}{c} x \le X_{c} + (0.5 L_{LEBU} ) \\ x \ge X_{c} - (0.5 L_{LEBU} ) \\ y \ge Y_{c} + (0.5 T_{LEBU} ) \\ y \le Y_{c} + (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(10)
$$ \begin{array}{l} \chi=-{\cos} \left( \frac{ x-X_{c}+0.5T_{LEBU}+0.2}{0.2}\pi \right)+0.5 \left\{ \begin{array}{c} x \le X_{c} - (0.5 L_{LEBU} ) \\ x \ge X_{c} - (0.5 L_{LEBU}+0.2 ) \\ y \le Y_{c} + (0.5 T_{LEBU} ) \\ y \ge Y_{c} - (0.5 T_{LEBU} ) \end{array} \right. \end{array} $$
(11)
$$ \begin{array}{l} \chi={\cos} \left( \frac{ x-X_{c}-0.5T_{LEBU}}{0.2}\pi \right)+0.5 \left\{ \begin{array}{c} x \ge X_{c} + (0.5 L_{LEBU} ) \\ x \le X_{c} + (0.5 L_{LEBU}+0.2 ) \\ y \le Y_{c} + (0.5 T_{LEBU} ) \\ y \ge Y_{c} - (0.5 T_{LEBU} ) \end{array} \right. \end{array} $$
(12)
$$ \begin{array}{l} \chi= \left[ -{\cos} \left( \frac{ y-Y_{c}+0.5T_{LEBU}+0.2}{0.2}\pi \right)+0.5\right]. \left[ -{\cos} \left( \frac{ x-X_{c}+0.5T_{LEBU}+0.2}{0.2}\pi \right)+0.5 \right] \\ \hspace{50mm} \left\{ \begin{array}{c} x \le X_{c} - (0.5 L_{LEBU} ) \\ x \ge X_{c} - (0.5 L_{LEBU}+0.2 ) \\ y \le Y_{c} - (0.5 T_{LEBU} ) \\ y \ge Y_{c} - (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(13)
$$ \begin{array}{l} \chi= \left[ -{\cos} \left( \frac{ y-Y_{c}+0.5T_{LEBU}+0.2}{0.2}\pi \right)+0.5\right] . \left[{\cos} \left( \frac{ x-X_{c}-0.5T_{LEBU}}{0.2}\pi \right)+0.5 \right] \\ \hspace{50mm} \left\{ \begin{array}{c} x \ge X_{c} + (0.5 L_{LEBU} ) \\ x \le X_{c} + (0.5 L_{LEBU}+0.2 ) \\ y \le Y_{c} - (0.5 T_{LEBU} ) \\ y \ge Y_{c} - (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(14)
$$ \begin{array}{l} \chi= \left[ {\cos} \left( \frac{ y-Y_{c}-0.5T_{LEBU}}{0.2}\pi \right)+0.5\right] . \left[ -{\cos} \left( \frac{ x-X_{c}+0.5T_{LEBU}+0.2}{0.2}\pi \right)+0.5 \right] \\ \hspace{50mm} \left\{ \begin{array}{c} x \le X_{c} - (0.5 L_{LEBU} ) \\ x \ge X_{c} - (0.5 L_{LEBU}+0.2 ) \\ y \ge Y_{c} + (0.5 T_{LEBU} ) \\ y \le Y_{c} + (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(15)
$$ \begin{array}{l} \chi= \left[ {\cos} \left( \frac{ y-Y_{c}-0.5T_{LEBU}}{0.2}\pi \right)+0.5\right] . \left[{\cos} \left( \frac{ x-X_{c}-0.5T_{LEBU}}{0.2}\pi \right)+0.5 \right] \\ \hspace{50mm} \left\{ \begin{array}{c} x \ge X_{c} + (0.5 L_{LEBU} ) \\ x \le X_{c} + (0.5 L_{LEBU}+0.2 ) \\ y \ge Y_{c} + (0.5 T_{LEBU} ) \\ y \le Y_{c} + (0.5 T_{LEBU} +0.2) \end{array} \right. \end{array} $$
(16)

where X c and Y c are the x,y location of the centroid of the LEBU, T L E B U and L L E B U are the thickness and length of the LEBU respectively.

Fig. 13
figure 13

The forcing function (χ) around the LEBU. Blue region denotes the LEBU where χ = 1. The yellow region consists of smoothing function denoted by the equation numbers. Outside of the yellow region, χ = 0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, C., Örlü, R., Monty, J. et al. Simulation of a Large-Eddy-Break-up Device (LEBU) in a Moderate Reynolds Number Turbulent Boundary Layer. Flow Turbulence Combust 98, 445–460 (2017). https://doi.org/10.1007/s10494-016-9757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9757-y

Keywords

Navigation