Skip to main content
Log in

Influence of a Large-Eddy-Breakup-Device on the Turbulent Interface of Boundary Layers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The effects of implementing a large-eddy break-up device (LEBU) in a turbulent boundary layer on the interaction with the boundary layer is investigated with particular emphasis on the turbulent/non-turbulent interface (TNTI). The simulation data is taken from a recent well-resolved large eddy simulation (Chin et al. Flow Turb. Combust. 98, 445–460 2017), where the LEBU was implemented at a wall-normal distance of 0.8 δ (local boundary layer thickness) from the wall. A comparison of the TNTI statistics is performed between a zero-pressure-gradient boundary layer with and without the LEBU. The LEBU is found to delay the growth of the turbulent boundary layer and also attenuates the fluctuations of the TNTI. The LEBU appears to alter the structure size at the interface, resulting in a narrower and shorter dominant structure (in an average sense). Further analysis beneath the TNTI using two-point correlations shows that the LEBU affects the turbulent structures in excess of 100 δ downstream of the LEBU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1956)

    MATH  Google Scholar 

  2. Corke, T.C., Guezennec, Y., Nagib, H.M.: Modification in Drag of Turbulent Boundary Layers Resulting from Manipulation of Large-Scale Structures. Tech. Rep. 3444, NASA CR (1981)

  3. Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Klein, H., Friedrich, R.: Large-eddy simulation of manipulated boundary layer and channel flows. In: Coustols, E. (ed.) Turbulence Control by Passice Means, pp. 41–65. Kluwer Academic Publishers (1990)

  5. Savill, A.M., Mumford, J.C.: Manipulation of turbulent boundary layers by outer-layer devices: skin-friction and flow-visualization results. J. Fluid Mech. 191, 389–418 (1988)

    Article  Google Scholar 

  6. Bogard, D.G., Tiederman, W.G.: Burst detection with single-point velocity measurements. J. Fluid Mech. 162, 389–413 (1986)

    Article  Google Scholar 

  7. Tardu, S., Binder, G.: Review: effect of the OLDs on near wall coherent structures; discussion and need for future work. In: Choi, K.-S. (ed.) Recent Developments in Turbulence Management, pp 147–160. Kluwer Academic Publishers, Norwell (1991)

  8. Sahlin, A., Alfredsson, P.H., Johansson, A.V.: Direct drag measurements for a flat plate with passive boundary layer manipulators. Phys. Fluids 29, 696–700 (1986)

    Article  Google Scholar 

  9. Sahlin, A., Johansson, A.V., Alfredsson, P.H.: The possibility of drag reduction by outer layer manipulators in turbulent boundary layers. Phys. Fluids 31, 2814–2820 (1988)

    Article  Google Scholar 

  10. Chin, C., Monty, J., Hutchins, N., Ooi, A., Örlü, R., Schlatter, P.: Simulation of a large-eddy-break-up device (LEBU) in a moderate Reynolds number turbulent boundary layer. Flow Turb. Combust. 98, 445–460 (2017)

    Article  Google Scholar 

  11. Walsh, M.J., Sellers III, W.L., McGinley, C.B.: Riblet drag at flight conditions. J. Aircraft 26, 570–575 (1989)

    Article  Google Scholar 

  12. Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)

    Article  MATH  Google Scholar 

  13. Mathis, R., Hutchins, N., Marusic, I.: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009)

    Article  MATH  Google Scholar 

  14. Schlatter, P., Li, Q., Örlü, R., Hussain, F., Henningson, D.S.: On the near-wall vortical structures at moderate Reynolds numbers. Eur. J. Mech. B-Fluid 48, 75–93 (2014)

    Article  Google Scholar 

  15. Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary layer up to R e 𝜃 = 8300. Int. J. Heat Fluid Flow 47, 57–69 (2014)

    Article  Google Scholar 

  16. Jimenez, J., Hoyas, S., Simens, M., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)

    Article  MATH  Google Scholar 

  17. da Silva, C.B., dos Reis, R.: The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. Roy. Soc. Lond. A 26, 738–753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Townsend, A.A.: The mechanism of entrainment in free turbulent flows. J. Fluid Mech. 26, 689–715 (1966)

    Article  Google Scholar 

  19. da Silva, C.B., Hunt, J.C.R., Eames, I., Westerweel, J.: Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567–590 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Westerweel, J., Fukushima, C., Pedersen, J., Hunt, J.: Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Let. 95, 174,501 (2005)

    Article  Google Scholar 

  21. Westerweel, J., Fukushima, C., Pedersen, J., Hunt, J.: Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230 (2009)

    Article  MATH  Google Scholar 

  22. Corrsin, S., Kistler, A.: Free-Stream Boundaries of Turbulent Flows. Tech. Rep. 1244, NASA (1955)

  23. Mathew, J., Basu, A.: Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 2065–2072 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spalart, P.R., Streletsb, M., Travin, A.: Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Int. J. Heat Fluid Flow 27, 902–910 (2006)

    Article  Google Scholar 

  25. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  MATH  Google Scholar 

  26. Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: SIMSON- a Pseudo-Spectral Solver for Incompressible Boundary Layer Flows. Tech. Rep. 7, Tech. Rep. TRITA-MEK (2007)

  27. Schlatter, P., Stolz, S., Kleiser, L.: LES of transitional flows using the approximate deconvolution model. Int. J. Heat Fluid Flow 25, 549–558 (2004)

    Article  Google Scholar 

  28. Inoue, M., Pullin, D.I.: Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to R e Θ = O(1012). J. Fluid Mech. 686, 507–533 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Araya, G., Castillo, L.: Direct numerical simulations of turbulent thermal boundary layers subjected to adverse streamwise pressure gradients. Phys. Fluids 25, 095,107 (2013)

    Article  Google Scholar 

  30. Schlatter, P., Örlü, R.: Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)

    Article  MATH  Google Scholar 

  31. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 366, 354–366 (1993)

    Article  MATH  Google Scholar 

  32. Chauhan, K., Philip, J., de Silva, C., Hutchins, N., Marusic, I.: The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119–151 (2014)

    Article  Google Scholar 

  33. Örlü, R., Schlatter, P.: Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Exp. Fluids 54, 1547 (2013)

    Article  Google Scholar 

  34. Chauhan, K.A., Monkewitz, P.A., Nagib, H.M.: Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021,404 (2009)

    Article  MATH  Google Scholar 

  35. Brown, G.L., Thomas, A.S.W.: Large structure in a turbulent boundary layer. Phys. Fluids 20, 243–252 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken with the assistance of resources provided at the NCI NF through the National Computational Merit Allocation Scheme supported by the Australian Government. Computer time was also provided by SNIC (Swedish National Infrastructure for Computing). The authors also acknowledge the financial support of the Australian Research Council as well as the Lundeqvist foundation. Financial support was also provided by the Wallenberg foundation via the Wallenberg Academy Fellow programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, C., Örlü, R., Schlatter, P. et al. Influence of a Large-Eddy-Breakup-Device on the Turbulent Interface of Boundary Layers. Flow Turbulence Combust 99, 823–835 (2017). https://doi.org/10.1007/s10494-017-9861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9861-7

Keywords

Navigation