Skip to main content
Log in

Flame Annihilation Displacement Speed and Stretch Rate in Turbulent Premixed Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper examines the dynamics of flame annihilation in turbulent premixed flames using a DNS dataset of Haghiri et al. (J. Fluid Mech. 843, 29 2018). Two theoretical frameworks are considered. The relative contributions of the reaction rate, normal diffusion and flame curvature to the flame displacement speed are first considered. A revised form of Markstein’s theory describing the displacement speed as a function of the local Karlovitz number is then used, including consideration of the relative importance of strain rate and curvature. Comparison of the statistics of flame annihilation to those of the entire flame surface suggests that this modified Markstein number might be sufficient to estimate the displacement speed for most annihilation events. This has important implications for level-set type combustion modelling where correct prediction of the displacement speed is a key part of describing the evolution of the flame surface. Given the significance of flame annihilation in sound generation by turbulent premixed flames (Haghiri et al. J. Fluid Mech. 843, 29 2018; Brouzet et al. Combust. Flame 204, 268 2019), these findings also have implications for the modelling of premixed combustion noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Swaminathan, N., Bray, K.N.C.: Turbulent Premixed Flames. Cambridge University Press (2011)

  2. Preetham, S.H., Lieuwen, T.C.: Response of turbulent premixed flames to harmonic acoustic forcing. Proc. Combust. Inst. 31(1), 1427 (2007)

    Google Scholar 

  3. Chowdhury, B.R., Cetegen, B.M.: Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames. Combust. Flame 178, 311 (2017)

    Google Scholar 

  4. Chowdhury, B.R., Wagner, J.A., Cetegen, B.M.: Experimental study of the effect of turbulence on the structure and dynamics of a bluff-body stabilized lean premixed flame. Proc. Combust. Inst. 36(2), 1853 (2017)

    Google Scholar 

  5. Aldredge, R.C.: Flame propagation in multiscale transient periodic flow. Combust. Flame 183, 166 (2017)

    Google Scholar 

  6. Roy, A., Sujith, R.I.: Nonlinear flame response dependencies of a V-flame subjected to harmonic forcing and turbulence. Combust. Flame 207, 101 (2019)

    Google Scholar 

  7. Haghiri, A., Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by turbulent premixed flames. J. Fluid Mech. 843, 29 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Schuller, T., Durox, D., Candel, S.: Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135(4), 525 (2003)

    Google Scholar 

  9. Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by laminar premixed flame annihilation. J. Fluid Mech. 679, 194 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Talei, M., Brear, M.J., Hawkes, E.R.: A parametric study of sound generation by premixed laminar flame annihilation. Combust. Flame 159(2), 757 (2012)

    MATH  Google Scholar 

  11. Talei, M., Hawkes, E.R., Brear, M.J.: A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proc. Combust. Inst. 34, 1093 (2012)

    Google Scholar 

  12. Talei, M., Brear, M.J., Hawkes, E.R.: A comparative study of sound generation by laminar, combusting and non-combusting jet flows. Theor. Comput. Fluid Dyn. 28 (4), 385 (2014)

    Google Scholar 

  13. Brear, M.J., Nicoud, F., Talei, M., Giauque, A., Hawkes, E.R.: Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 1(1), 1 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Jiménez, C., Haghiri, A., Talei, M., Brear, M.J., Hawkes, E.R.: Sound generation by premixed flame annihilation with full and simple chemistry. Proc. Combust. Inst. 35, 3317 (2015)

    Google Scholar 

  15. Lieuwen, T.: Unsteady Combustor Physics. Cambridge University Press (2012)

  16. Dowling, A.P., Mahmoudi, Y.: Combustion noise. Proc. Combust. Inst. 35, 65 (2015)

    Google Scholar 

  17. Ihme, M.: Combustion and engine-core noise. Annu. Rev. Fluid Mech. 49, 277 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Juniper, M.P., Sujith, R.: Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Echekki, T., Chen, J., Gran, I.: The mechanism of mutual annihilation of stoichiometric premixed methane-air flames. Proc. Combust. Inst. 26, 855 (1996)

    Google Scholar 

  20. Ranganath, B., Echekki, T.: Effects of preferential and differential diffusion on the mutual annihilation of two premixed hydrogen–air flames. Combust. Theory Modelling 9(4), 659 (2005)

    MATH  Google Scholar 

  21. Chen, C.L., Sohrab, S.H.: Upstream interactions between planar symmetric laminar methane premixed flames. Combust. Flame 101(3), 360 (1995)

    Google Scholar 

  22. Ranganath, B., Echekki, T.: On the role of heat and mass transport during the mutual annihilation of two premixed propane–air flames. Int. J. Heat Mass Transf. 49 (25–26), 5075 (2006)

    MATH  Google Scholar 

  23. Lu, Z., Ghosal, S.: A similarity solution describing the collision of two planar premixed flames. Combust. Theory Modelling 7(4), 645 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Wichman, I.S., Vance, R.: A study of one-dimensional laminar premixed flame annihilation. Combust. Flame 110(4), 508 (1997)

    Google Scholar 

  25. Durox, D., Ducruix, S., Candel, S.: Experiments on collapsing cylindrical flames. Combust. Flame 125(1), 982 (2001)

    Google Scholar 

  26. Fursenko, R., Minaev, S., Pan, K.L.: Hydrodynamic instability of inward-propagating flames. Combust. Explosion Shock Waves 45(5), 511 (2009)

    Google Scholar 

  27. Groot, G., De Goey, L.: A computational study on propagating spherical and cylindrical premixed flames. Proc. Combust. Inst. 29(2), 1445 (2002)

    Google Scholar 

  28. Ibarreta, A.F., Driscoll, J.F.: Measured burning velocities of stretched inwardly propagating premixed flames. Proc. Combust. Inst. 28(2), 1783 (2000)

    Google Scholar 

  29. Baillot, F., Durox, D., Demare, D.: Experiments on imploding spherical flames: Effects of curvature. Proc. Combust. Inst. 29(2), 1453 (2002)

    Google Scholar 

  30. Denet, B.: Pockets in turbulent premixed flames. Combust. Theory Modell. 5 (1), 85 (2001)

    MATH  Google Scholar 

  31. Sun, C.J., Law, C.K.: On the consumption of fuel pockets via inwardly propagating flames. Symp. (Int.) Combust. 27(1), 963 (1998)

    Google Scholar 

  32. Mishra, D., Paul, P., Mukunda, H.: Stretch effects extracted from inwardly and outwardly propagating spherical premixed flames. Combust. Flame 97(1), 35 (1994)

    Google Scholar 

  33. Chen, J.H., Echekki, T., Kollmann, W.: The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion. Combust. Flame 116(1), 15 (1999)

    Google Scholar 

  34. Echekki, T., Chen, J.H., Gran, I.: The mechanism of mutual annihilation of stoichiometric premixed methane-air flames. Symp.(Int.) Combust. 26(1), 855 (1996)

    Google Scholar 

  35. Wiseman, S.M., Brear, M.J., Gordon, R.L., Marusic, I.: Measurements from flame chemiluminescence tomography of forced laminar premixed propane flames. Combust. Flame 183, 1 (2017)

    Google Scholar 

  36. Strahle, W.C.: Combustion noise. Prog. Energy Combust. Sci. 4(3), 157 (1978)

    Google Scholar 

  37. Docquier, N., Candel, S.: Combustion control and sensors: A review. Prog. Energy Combust. Sci. 28(2), 107 (2002)

    Google Scholar 

  38. Lieuwen, T.C.: Unsteady Combustor Physics. Cambridge University Press (2012)

  39. Kabiraj, L., Sujith, R.: Nonlinear self-excited thermoacoustic oscillations: Intermittency and flame blowout. J. Fluid Mech. 713, 376 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Humphrey, L.J., Emerson, B., Lieuwen, T.C.: Premixed turbulent flame speed in an oscillating disturbance field. J. Fluid Mech. 835, 102 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Markstein, G.: Non-Steady Flame Propagation. Pergamon, New York (1964)

    Google Scholar 

  42. Matalon, M., Matkowsky, B.: Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239 (1982)

    MATH  Google Scholar 

  43. Sinibaldi, J.O., Driscoll, J.F., Mueller, C.J., Donbar, J.M., Carter, C.D.: Propagation speeds and stretch rates measured along wrinkled flames to assess the theory of flame stretch. Combust. Flame 133(3), 323 (2003)

    Google Scholar 

  44. Poinsot, T., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81(1–3), 45 (1992)

    Google Scholar 

  45. Chen, J.H., Im, H.G.. In: Symposium (International) on Combustion, vol. 27, pp 819–826. Elsevier (1998)

  46. Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combust. Flame 138(3), 242 (2004)

    Google Scholar 

  47. Sankaran, R., Hawkes, E.R., Yoo, C.S., Chen, J.H.: Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames. Combust. Flame 162(9), 3294 (2015)

    Google Scholar 

  48. Bradley, D., Gaskell, P., Gu, X.: Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study. Combust. Flame 104(1–2), 176 (1996)

    Google Scholar 

  49. Gu, X.J., Haq, M.Z., Lawes, M., Woolley, R.: Laminar burning velocity and markstein lengths of methane–air mixtures. Combust. Flame 121(1–2), 41 (2000)

    Google Scholar 

  50. Giannakopoulos, G.K., Matalon, M., Frouzakis, C., Tomboulides, A.G.: The curvature Markstein length and the definition of flame displacement speed for stationary spherical flames. Proc. Combust. Inst. 35(1), 737 (2015)

    Google Scholar 

  51. Searby, G., Quinard, J.: Direct and indirect measurements of Markstein numbers of premixed flames. Combust. Flame 82(3–4), 298 (1990)

    Google Scholar 

  52. Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flow. J. de Physique Lettres 44(1), 1 (1983)

    Google Scholar 

  53. Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G.: Flame interactions in turbulent premixed twin V-flames. Combust. Sci. Technol. 185(1), 134 (2013)

    Google Scholar 

  54. Griffiths, R.A.C., Chen, J.H., Kolla, H., Cant, R.S., Kollmann, W.: Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35(2), 1341 (2015)

    Google Scholar 

  55. Trivedi, S., Griffiths, R., Kolla, H., Chen, J., Cant, R.S.: Topology of pocket formation in turbulent premixed flames. Proc. Combust. Inst. 37(2), 2619 (2019)

    Google Scholar 

  56. Trivedi, S., Nivarti, G., Cant, R.S.: Flame self-interactions with increasing turbulence intensity. Proc. Combust. Inst. 37(2), 2443 (2019)

    Google Scholar 

  57. Tyagi, A., Boxx, I., Peluso, S., O’Connor, J.: Statistics and topology of local flame–flame interactions in turbulent flames. Combust. Flame 203, 92 (2019)

    Google Scholar 

  58. Tyagi, A., Boxx, I., Peluso, S., O’Connor, J.: The role of flow interaction in flame–flame interaction events in a dual burner experiment. Proc. Combust. Inst. 37 (2), 2485 (2019)

    Google Scholar 

  59. Hawkes, E.R., Chatakonda, O., Kolla, H., Kerstein, A.R., Chen, J.H.: A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159(8), 2690 (2012)

    Google Scholar 

  60. Brouzet, D., Haghiri, A., Talei, M., Brear, M.J.: Annihilation events topology and their generated sound in turbulent premixed flames. Combust. Flame 204, 268 (2019)

    Google Scholar 

  61. Worth, N.A., Dawson, J.R.: Characterisation of flame surface annihilation events in self excited interacting flames. Combust. Flame 199, 338 (2019)

    Google Scholar 

  62. Echekki, T., Chen, J.H.: Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118(1), 308 (1999)

    Google Scholar 

  63. Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106(1), 184 (1996)

    Google Scholar 

  64. Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.. In: Symposium (International) on Combustion, vol. 27, pp 833–839. Elsevier (1998)

  65. Chen, J., Im, H.: Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28(1), 211 (2000)

    Google Scholar 

  66. Haq, M., Sheppard, C., Woolley, R., Greenhalgh, D., Lockett, R.: Wrinkling and curvature of laminar and turbulent premixed flames. Combust. Flame 131(1), 1 (2002)

    Google Scholar 

  67. Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137(1), 129 (2004)

    Google Scholar 

  68. Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30(1), 647 (2005)

    Google Scholar 

  69. Hawkes, E.R., Chen, J.H.: Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combust. Flame 144(1), 112 (2006)

    Google Scholar 

  70. Kerl, J., Lawn, C., Beyrau, F.: Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV. Combust. Flame 160 (12), 2757 (2013)

    Google Scholar 

  71. Fogla, N., Creta, F., Matalon, M.: Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162(7), 2758 (2015)

    Google Scholar 

  72. Ma, L., Wu, Y., Lei, Q., Xu, W., Carter, C.D.: 3D flame topography and curvature measurements at 5 kHz on a premixed turbulent bunsen flame. Combusti. Flame 166, 66 (2016)

    Google Scholar 

  73. Matalon, M.: On flame stretch. Combust. Sci. Technol. 31(3–4), 169 (1983)

    Google Scholar 

  74. Pope, S.: The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26(5), 445 (1988)

    MathSciNet  MATH  Google Scholar 

  75. Candel, S., Poinsot, T.: Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70(1–3), 1 (1990)

    Google Scholar 

  76. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Cited By (since 1996), 714 (2001)

  77. Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81 (2008)

    MATH  Google Scholar 

  78. Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S., Yoo, C.S.: Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov. 2(1), 015001 (2009)

    Google Scholar 

  79. Karami, S., Hawkes, E.R., Talei, M., Chen, J.H.: Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame. J. Fluid Mech. 777, 633 (2015)

    MathSciNet  MATH  Google Scholar 

  80. Karami, S., Hawkes, E.R., Talei, M., Chen, J.H.: Edge flame structure in a turbulent lifted flame: A direct numerical simulation study. Combustion and Flame 169, 110 (2016)

    Google Scholar 

  81. Karami, S., Talei, M., Hawkes, E.R., Chen, J.H.: Local extinction and reignition mechanism in a turbulent lifted flame: A direct numerical simulation study. Proceedings of the Combustion Institute (2016)

  82. Goix, P.J., Shepherd, I.: Lewis number effects on turbulent premixed flame structure. Combust. Sci. Technol. 91(4–6), 191 (1993)

    Google Scholar 

  83. Baum, M., Poinsot, T., Haworth, D., Darabiha, N.: Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 1 (1994)

    Google Scholar 

  84. Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405 (1992)

    Google Scholar 

  85. Lee, T.W., North, G., Santavicca, D.: Curvature and orientation statistics of turbulent premixed flame fronts. Combust. Sci. Technol. 84(1–6), 121 (1992)

    Google Scholar 

  86. Lapointe, S., Blanquart, G.: Fuel and chemistry effects in high Karlovitz premixed turbulent flames. Combust. Flame 167, 294 (2016)

    Google Scholar 

  87. Libby, F.A., Williams, P.A.: Turbulent Reacting Flows. Academic Press, London (1994)

    MATH  Google Scholar 

  88. Kostiuk, L., Bray, K.: Mean effects of stretch on laminar flamelets in a premixed turbulent flame. Combust. Sci. Technol. 95(1–6), 193 (1993)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (ARC) [grants DP120101830 and DE180100416] and the University of Melbourne through a Melbourne International Research Scholarship and a Melbourne International Fee Remission Scholarship. The research benefited from computational resources provided through the National Computational Merit Allocation Scheme (NCMAS) and the Pawsey Energy and Resources Scheme, supported by the Australian Government. The computational facilities supporting this project included the Australian NCI National Facility and the Pawsey Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haghiri.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghiri, A., Talei, M., Brear, M.J. et al. Flame Annihilation Displacement Speed and Stretch Rate in Turbulent Premixed Flames. Flow Turbulence Combust 104, 977–996 (2020). https://doi.org/10.1007/s10494-019-00078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00078-0

Keywords

Navigation