Skip to main content
Log in

Live-cell imaging and mathematical analysis of the “community effect” in apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

As a cellular intrinsic mechanism leading to cellular demise, apoptosis was thoroughly characterized from a mechanistic perspective. Nowadays there is an increasing interest in describing the non-cell autonomous or community effects of apoptosis, especially in the context of resistance to cancer treatments. Transitioning from cell-centered to cell population-relevant mechanisms adds a layer of complexity for imaging and analyzing an enormous number of apoptotic events. In addition, the community effect between apoptotic and living cells is difficult to be taken into account for complex analysis. We describe here a robust and easy to implement method to analyze the interactions between cancer cells, while under apoptotic pressure. Using this approach we showed as proof-of-concept that apoptosis is insensitive to cellular density, while the proximity to apoptotic cells increases the probability of a given cell to undergo apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analyses in this study are available from the corresponding author on reasonable request.

References

  1. Strasser A, Vaux DL (2020) Cell death in the origin and treatment of cancer. Mol Cell 78:1045–1054

    Article  CAS  PubMed  Google Scholar 

  2. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17:395–417

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The “complexities” of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277

    Article  CAS  PubMed  Google Scholar 

  4. Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21:85–100

    Article  CAS  PubMed  Google Scholar 

  5. Ichim G, Lopez J, Ahmed SU, Muthalagu N, Giampazolias E, Delgado ME, Haller M, Riley JS, Mason SM, Athineos D, Parsons MJ, van de Kooij B, Bouchier-Hayes L, Chalmers AJ, Rooswinkel RW, Oberst A, Blyth K, Rehm M, Murphy DJ, Tait SWG (2015) Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol Cell 57:860–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, Linkermann A, Green DR (2017) ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169:286–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong YN, Crawford JC, Heckmann BL, Green DR (2019) To the edge of cell death and back. FEBS J 286:430–440

    Article  CAS  PubMed  Google Scholar 

  8. Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G (2016) Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell 165:631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gagliardi PA, Dobrzyński M, Jacques MA, Dessauges C, Ender P, Blum Y, Hughes RM, Cohen AR, Pertz O (2021) Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival. Dev Cell 56:1712-1726.e1716

    Article  CAS  PubMed  Google Scholar 

  10. Bock FJ, Cloix C, Zerbst D, Tait SWG (2020) Apoptosis-induced FGF signalling promotes non-cell autonomous resistance to cell death. bioRxiv, 2020.2007.2012.199430

  11. Ankawa R, Goldberger N, Yosefzon Y, Koren E, Yusupova M, Rosner D, Feldman A, Baror-Sebban S, Buganim Y, Simon DJ, Tessier-Lavigne M, Fuchs Y (2021) Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev cell 56:1900–1916

    Article  CAS  PubMed  Google Scholar 

  12. Kawaue K, Yow I, Le AP, Lou Y, Loberas M, Shagirov M, Prost J, Hiraiwa T, Ladoux B, Toyama Y (2021) Mechanics defines the spatial pattern of compensatory proliferation. bioRxiv, 2021.2007.2004.451019

  13. Ruff MR, Gifford GE (1981) Rabbit tumor necrosis factor: mechanism of action. Infect Immun 31:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reuven N, Adler J, Meltser V, Shaul Y (2013) The Hippo pathway kinase Lats2 prevents DNA damage-induced apoptosis through inhibition of the tyrosine kinase c-Abl. Cell Death Differ 20:1330–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bar J, Cohen-Noyman E, Geiger B, Oren M (2004) Attenuation of the p53 response to DNA damage by high cell density. Oncogene 23:2128–2137

    Article  CAS  PubMed  Google Scholar 

  16. Ma Q, Wang Y, Lo AS, Gomes EM, Junghans RP (2010) Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J Biomed Biotechnol 2010:386545

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kühn K, Hashimoto S, Lotz M (1999) Cell density modulates apoptosis in human articular chondrocytes. J Cell Physiol 180:439–447

    Article  PubMed  Google Scholar 

  18. Bhola PD, Simon SM (2009) Determinism and divergence of apoptosis susceptibility in mammalian cells. J Cell Sci 122:4296–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oren Y, Tsabar M, Cuoco MS, Amir-Zilberstein L, Cabanos HF, Hütter JC, Hu B, Thakore PI, Tabaka M, Fulco CP, Colgan W, Cuevas BM, Hurvitz SA, Slamon DJ, Deik A, Pierce KA, Clish C, Hata AN, Zaganjor E, Lahav G, Politi K, Brugge JS, Regev A (2021) Cycling cancer persister cells arise from lineages with distinct programs. Nature 596(7873):576–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Imig D, Pollak N, Allgöwer F, Rehm M (2020) Sample-based modeling reveals bidirectional interplay between cell cycle progression and extrinsic apoptosis. PLoS Comput Biol 16:e1007812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rehm M, Huber HJ, Dussmann H, Prehn JH (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmid J, Dussmann H, Boukes GJ, Flanagan L, Lindner AU, O’Connor CL, Rehm M, Prehn JH, Huber HJ (2012) Systems analysis of cancer cell heterogeneity in caspase-dependent apoptosis subsequent to mitochondrial outer membrane permeabilization. J Biol Chem 287:41546–41559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Forcina GC, Conlon M, Wells A, Cao JY, Dixon SJ (2017) Systematic quantification of population cell death kinetics in mammalian cells. Cell Syst 4:600-610.e606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inde Z, Forcina GC, Denton K, Dixon SJ (2020) Kinetic heterogeneity of cancer cell fractional killing. Cell Rep 32:107845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pérez-Garijo A, Fuchs Y, Steller H (2013) Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. Elife 2:e01004

    Article  PubMed  PubMed Central  Google Scholar 

  27. Riegman M, Bradbury MS, Overholtzer M (2019) Population dynamics in cell death: mechanisms of propagation. Trends Cancer 5:558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, Prokai A, Zuchtriegel G, Krombach F, Welz PS, Weinlich R, Vanden Berghe T, Vandenabeele P, Pasparakis M, Bleich M, Weinberg JM, Reichel CA, Bräsen JH, Kunzendorf U, Anders HJ, Stockwell BR, Green DR, Krautwald S (2014) Synchronized renal tubular cell death involves ferroptosis. Pro Nat Acad Sci USA 111:16836–16841

    Article  CAS  Google Scholar 

  29. Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ, Wiesner U, Bradbury MS, Niethammer P, Zaritsky A, Overholtzer M (2020) Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 22:1042–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3:13

    Article  Google Scholar 

  31. Kowarz E, Loscher D, Marschalek R (2015) Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J 10:647–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from Institute Convergence PLAsCAN (ANR-17-CONV-0002), LabEx DEVweCAN (University of Lyon), Agence Nationale de la Recherche (ANR) Young Researchers Project (ANR-18-CE13-0005-01), La Ligue Nationale Contre le Cancer and Fondation de France supported this work. We thank Brigitte Manship for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GI, DC, HL and EG; Methodology: GI, DC, HL and EG; Formal analysis: GI, DC and HL; Investigation: GI, DC, DC and HL; Resources: GI, DC, HL and EG; Writing—Original Draft and Editing: GI; All authors reviewed and edited the manuscript; Supervision: GI, DC, HL and EG; Project administration and funding acquisition: GI.

Corresponding author

Correspondence to Gabriel Ichim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10495_2022_1783_MOESM1_ESM.tif

(Related to Figure 3).A, B. Probability estimates (upper panels) and the corresponding p-value (lower panels) for the occurrence of apoptosis in ABT-737/UMI-77-treated WM115 H2B-mCherry cells surrounded by 2 or 3 neighboring cells. C, D. Similar analysis as in (A, B), albeit apoptosis was triggered by doxycycline induction of pro-apoptotic BAX protein.Supplementary file1 (TIF 36041 kb)

10495_2022_1783_MOESM2_ESM.tif

(Related to Figure 4). A, B. Probability estimates (upper panels) and the corresponding p-value (lower panels) for the occurrence of apoptosis in ABT-737/UMI-77-treated WM115 H2B-mCherry cells surrounded by 2 or 3 apoptotic neighboring cells. C, D. Similar analysis as in (A, B), albeit apoptosis was triggered by doxycycline induction of pro-apoptotic BAX protein.Supplementary file2 (TIF 36031 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coursier, D., Coulette, D., Leman, H. et al. Live-cell imaging and mathematical analysis of the “community effect” in apoptosis. Apoptosis 28, 326–334 (2023). https://doi.org/10.1007/s10495-022-01783-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01783-4

Keywords

Navigation