Skip to main content
Log in

Exploring the accretion-induced evolution of the spin period and magnetic field strength of Be/X-ray Pulsars

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Based on the detected spin periods (\(P\)) and inferred magnetic field strengths (\(B\)) by the cyclotron resonance scattering features, we analyze the \(B-P\) properties of Be/X-ray Pulsars (BeXPs). We find that the \(P\) distribution of BeXPs exhibits a bimodal feature separated at \(P\sim 40\) s, where the average spin period of the BeXPs with \(P>40\) s (\(\langle P\rangle \sim 267\) s) is larger than that of the sources with \(P<40\) s (\(\langle P\rangle \sim 10\) s) by about one magnitude of order. Meanwhile, the average magnetic field strength of the long period BeXPs (\(\langle B\rangle \sim 4.9\times 10^{12}\) G) is higher than that of the short period sources (\(\langle B\rangle \sim 2.7\times 10^{12}\) G) by a factor of \(\sim 2\). We try to explain these phenomena by the accretion-induced evolution process, and find that for the neutron star (NS) with the initial magnetic field strength of \(B_{0}\sim 10^{12.2}-10^{13}\) G, when it accretes about \(\Delta M\sim 10^{-6.5}\,\mathrm{M_{\odot }}\) companion matter, its spin period can shorten from \(P_{0}\sim 1000\) s to \(P\sim 260\) s, while its magnetic field strength decays little. Furthermore, when the NS accretes about \(\Delta M\sim 10^{-5.5}\,\mathrm{M_{\odot }}\) matter, its spin period can shorten to \(P\sim 10\) s, while its magnetic field strength decays by half. Finally, we also notice that as the continuing of the accretion process in Be/X-ray binary, when its NS accretes about \(\sim 10^{-3}\,\mathrm{M_{\odot }}\) mater, it has the possibility to evolve to the double neutron star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera, D.N., Pons, J.A., Miralles, J.A.: Astron. Astrophys. 486, 255 (2008)

    ADS  Google Scholar 

  • Antoniou, V., Zezas, A.: Mon. Not. R. Astron. Soc. 459, 528 (2016)

    ADS  Google Scholar 

  • Becker, W., Kramer, M., Sesana, A.: Space Sci. Rev. 214, 30 (2018)

    ADS  Google Scholar 

  • Bhattacharya, D., van den Heuvel, E.P.J.: Phys. Rep. 203, 1 (1991)

    ADS  Google Scholar 

  • Bisnovati-Kogan, G., Komberg, B.: Sov. Astron. 18, 217 (1974)

    ADS  Google Scholar 

  • Bodaghee, A., Tomsick, J.A., Fornasini, F.M., et al.: Astrophys. J. 823, 146 (2016)

    ADS  Google Scholar 

  • Bozzo, E., Ferrigno, C., Türler, M., et al.: Astron. Astrophys. 545, A83 (2012)

    Google Scholar 

  • Caballero, I., Wilms, J.: Mem. Soc. Astron. Ital. 83, 230 (2012)

    ADS  Google Scholar 

  • Chakrabarty, D., Koh, T., Bildsten, L., et al.: Astrophys. J. 446, 826 (1995)

    ADS  Google Scholar 

  • Cheng, Z.Q., Shao, Y., Li, X.D.: Astrophys. J. 786, 128 (2014)

    ADS  Google Scholar 

  • Coburn, W., Heindl, W.A., Gruber, D.E., et al.: Astrophys. J. 552, 738 (2001)

    ADS  Google Scholar 

  • Coburn, W., Heindl, W.A., Rothschild, R.E., et al.: Astrophys. J. 580, 394 (2002)

    ADS  Google Scholar 

  • Coburn, W., Kretschmar, P., Kreykenbohm, I., et al.: The Astronomer’s Telegram, No. 381 (2005)

  • Coe, M.J., Kirk, J.: Mon. Not. R. Astron. Soc. 452, 969 (2015)

    ADS  Google Scholar 

  • Corbet, R.H.D.: Astron. Astrophys. 141, 91 (1984)

    ADS  Google Scholar 

  • Corbet, R.H.D., Krimm, H.A.: The Astronomer’s Telegram, No. 2008 (2009)

  • Cumming, A., Zweibel, E., Bildsten, L.: Astrophys. J. 557, 958 (2001)

    ADS  Google Scholar 

  • Cumming, A., Arras, P., Zweibel, E.: Astrophys. J. 609, 999 (2004)

    ADS  Google Scholar 

  • DeCesar, M.E., Boyd, P.T., Pottschmidt, K., et al.: Astrophys. J. 762, 61 (2013)

    ADS  Google Scholar 

  • Delgado-Martí, H., Levine, A.M., Pfahl, E., Rappaport, S.A.: Astrophys. J. 546, 455 (2001)

    ADS  Google Scholar 

  • Doroshenko, V., Suchy, S., Santangelo, A., et al.: Astron. Astrophys. 515, 1 (2010)

    ADS  Google Scholar 

  • Ferrigno, C., Falanga, M., Bozzo, E., et al.: Astron. Astrophys. 532, A76 (2011)

    Google Scholar 

  • Finger, M.H., Wilson, R.B., Harmon, B.A.: Astrophys. J. 459, 288 (1996)

    ADS  Google Scholar 

  • Fürst, F., Pottschmidt, K., Wilms, J., et al.: Astrophys. J. 784, L40 (2014)

    ADS  Google Scholar 

  • Galloway, D.K., Morgan, E.H., Levine, A.M.: Astrophys. J. 613, 1164 (2014)

    ADS  Google Scholar 

  • Geppert, U., Rheinhardt, M.: Astron. Astrophys. 392, 1015 (2002)

    ADS  Google Scholar 

  • Geppert, U., Urpin, V.: Mon. Not. R. Astron. Soc. 271, 490 (1994)

    ADS  Google Scholar 

  • Ghosh, P., Lamb, F.K.: Astrophys. J. 234, 296 (1979)

    ADS  Google Scholar 

  • Haberl, F., Sturm, R.: Astron. Astrophys. 586, A81 (2016)

    ADS  Google Scholar 

  • Heindl, W.A., Coburn, W., Gruber, D.E., et al.: Astrophys. J. 521, L49 (1999)

    ADS  Google Scholar 

  • Heindl, W.A., Coburn, W., Gruber, D.E., et al.: Astrophys. J. 563, L35 (2001)

    ADS  Google Scholar 

  • Heindl, W.A., Coburn, W., Kreykenbohm, I., Wilms, J.: The Astronomer’s Telegram, No. 200 (2003)

  • Huckle, H.E., Mason, K.O., White, N.E., et al.: Mon. Not. R. Astron. Soc. 180, 21 (1977)

    ADS  Google Scholar 

  • Igoshev, A.P., Popov, S.B.: Astron. Nachr. 336, 831 (2015)

    ADS  Google Scholar 

  • Jaisawal, G.K., Naik, S.: Mon. Not. R. Astron. Soc. 453, L21 (2015)

    ADS  Google Scholar 

  • Jaisawal, G.K., Naik, S.: Mon. Not. R. Astron. Soc. 461, L97 (2016)

    ADS  Google Scholar 

  • Kaper, L., van der Meer, A., Najarro, F.: Astron. Astrophys. 457, 595 (2006)

    ADS  Google Scholar 

  • Knigge, C., Coe, M.J., Podsiadlowski, P.: Nature 479, 372 (2011)

    ADS  Google Scholar 

  • Koh, D.T., Bildsten, L., Chakrabarty, D., et al.: Astrophys. J. 479, 933 (1997)

    ADS  Google Scholar 

  • Kuehnel, M., Mueller, S., Kreykenbohm, I., et al.: The Astronomer’s Telegram, No. 4564 (2012)

  • Lamb, F.K., Pethick, C.J., Pines, D.: Astrophys. J. 184, 271 (1973)

    ADS  Google Scholar 

  • Lee, U., Osaki, Y., Saio, H.: Mon. Not. R. Astron. Soc. 250, 432 (1991)

    ADS  Google Scholar 

  • Li, J., Zhang, S., Torres, D.F., et al.: Mon. Not. R. Astron. Soc. 426, L16 (2012)

    ADS  Google Scholar 

  • Liu, Q.Z., van Paradijs, J., van den Heuvel, E.P.J.: Astron. Astrophys. 442, 1135 (2005)

    ADS  Google Scholar 

  • Maitra, C.: Astron. Astrophys. 38, 50 (2017)

    Google Scholar 

  • Makishima, K., Mihara, T.: In: Frontiers Science Series, vol. 23 (1992)

    Google Scholar 

  • Makishima, K., Mihara, T., Ishida, M., et al.: Astrophys. J. 365, L59 (1990)

    ADS  Google Scholar 

  • Makishima, K., Mihara, T., Nagase, F., Tanaka, Y.: Astrophys. J. 525, 978 (1999)

    ADS  Google Scholar 

  • Manchester, R.N., Hobbs, G.B., Teoh, A., Hobbs, M.: Astron. J. 129, 1993–2006 (2005). https://doi.org/10.1086/428488

    Article  ADS  Google Scholar 

  • Manousakis, A., Walter, R., Audard, M., Lanz, T.: Astron. Astrophys. 498, 217 (2009a)

    ADS  Google Scholar 

  • Manousakis, A., Walter, R., Audard, M., Lanz, T.: In: American Institute of Physics Conference Series, vol. 1126, p. 325 (2009b)

    Google Scholar 

  • McBride, V.A., Wilms, J., Coe, M.J., et al.: Astron. Astrophys. 451, 267 (2006)

    ADS  Google Scholar 

  • Melatos, A., Payne, D.J.B.: Astrophys. J. 623, 1044 (2005)

    ADS  Google Scholar 

  • Mésźaros, P.: High-energy radiation from magnetized neutron stars, p. 25. Univ. Chicago Press, Chicago (1992)

    Google Scholar 

  • Mihara, T., Makishima, K., Kamijo, S., et al.: Astrophys. J. 379, L61 (1991)

    ADS  Google Scholar 

  • Mihara, T., Yamamoto, T., Sugizaki, M., Yamaoka, K.: The Astronomer’s Telegram, No. 2796 (2010)

  • Nakajima, M., Mihara, T., Makishima, K.: Astrophys. J. 710, 1755 (2010)

    ADS  Google Scholar 

  • Orlandini, M., Frontera, F., Masetti, N., et al.: Astrophys. J. 748, 86 (2012)

    ADS  Google Scholar 

  • Pan, Y.Y., Song, L.M., Zhang, C.M., Guo, Y.Q.: Astron. Nachr. 336, 370 (2015)

    ADS  Google Scholar 

  • Payne, D.J.B., Melatos, A.: Mon. Not. R. Astron. Soc. 351, 569 (2004)

    ADS  Google Scholar 

  • Popov, S.B., Igoshev, A.V., Tavern, R., Turolla, R.: J. Phys. Conf. Ser. 932, 012048 (2017)

    Google Scholar 

  • Priedhorsky, W.C., Terrell, J.: Astrophys. J. 273, 709 (1983)

    ADS  Google Scholar 

  • Qu, J.L., Zhang, S., Song, L.M., Falanga, M.: Astrophys. J. 629, L33 (2005)

    ADS  Google Scholar 

  • Raguzova, N.V., Popov, S.B.: Astron. Astrophys. Trans. 24, 151 (2005)

    ADS  Google Scholar 

  • Rappaport, S., Clark, G.W., Cominsky, L., et al.: Astrophys. J. 224, L1 (1978)

    ADS  Google Scholar 

  • Reig, P.: Astrophys. Space Sci. 332, 1 (2011)

    ADS  Google Scholar 

  • Rodriguez, J., Tuerler, M., Chaty, S., Tomsick, J.A.: The Astronomer’s Telegram, No. 1998 (2009)

  • Rosenberg, F.D., Eyles, C.J., Skinner, G.K., Willmore, A.P.: Nature 256, 628 (1975)

    ADS  Google Scholar 

  • Roy, J., Choudhury, M., Agrawa, P.C.: Astrophys. J. 848, 124 (2017)

    ADS  Google Scholar 

  • Shapiro, S.L., Teukolsky, S.A.: White Dwarfs and Neutron Stars p. 285. John Wiley and Sons, New York (1983)

    Google Scholar 

  • Shibazaki, N., Murakami, T., Shaham, J., Nomoto, K.: Nature 342, 656 (1989)

    ADS  Google Scholar 

  • Shtykovsky, A.E., Lutovinov, A.A., Tsygankov, S.S., Molkov, S.V.: Mon. Not. R. Astron. Soc. 482, L14 (2019)

    ADS  Google Scholar 

  • Smith, D.A., Takeshima, T.: The Astronomer’s Telegram, No. 36 (1998)

  • Staubert, R., Pottschmidt, K., Doroshenko, V., et al.: Astron. Astrophys. 527, A7 (2011)

    Google Scholar 

  • Stollberg, M.T., Finger, M.H., Wilson, R.B., et al.: IAUCIRC 5836, 1 (1993)

    ADS  Google Scholar 

  • Sturm, R., Haberl, F., Rau, A., et al.: Astron. Astrophys. 542, A109 (2012)

    Google Scholar 

  • Suchy, S., Fürst, F., Pottschmidt, K., et al.: Astrophys. J. 745, 124 (2012)

    ADS  Google Scholar 

  • Tendulkar, S.P., Fürst, F., Pottschmidt, K., et al.: Astrophys. J. 795, 154 (2014)

    ADS  Google Scholar 

  • Terada, Y., Mihara, T., Nakajima, M., et al.: Astrophys. J. 648, L139 (2006)

    ADS  Google Scholar 

  • Townsend, L.J., Coe, M.J., Corbet, R.H.D., Hill, A.B.: Mon. Not. R. Astron. Soc. 416, 1556 (2011)

    ADS  Google Scholar 

  • Trüemper, J., Pietsch, W., Reppin, C., et al.: Astrophys. J. 219, 105 (1978)

    ADS  Google Scholar 

  • Tsygankov, S.S., Krivonos, R.A., Lutovinov, A.A.: Mon. Not. R. Astron. Soc. 421, 2407 (2012)

    ADS  Google Scholar 

  • Tsygankov, S.S., Lutovinov, A.A., Krivonos, R.A., et al.: Mon. Not. R. Astron. Soc. 457, 258 (2016)

    ADS  Google Scholar 

  • Tuerler, M., Chenevez, J., Bozzo, E., et al.: The Astronomer’s Telegram. No. 3947 (2012)

  • Urpin, V., Geppert, U., Konenkov, D.: Mon. Not. R. Astron. Soc. 295, 907 (1997)

    ADS  Google Scholar 

  • Urpin, V., Konenkov, D., Geppert, U.: Mon. Not. R. Astron. Soc. 299, 73 (1998)

    ADS  Google Scholar 

  • van den Heuvel, E.P.J.: Proceedings of the International Astronomical Union, vol. 346, p. 1 (2019)

    Google Scholar 

  • Vasilopoulos, G., Haberl, F., Sturm, R., et al.: Astron. Astrophys. 567, A129 (2014)

    ADS  Google Scholar 

  • Vasilopoulos, G., Haberl, F., Delvaux, C., et al.: Mon. Not. R. Astron. Soc. 461, 1875 (2016)

    ADS  Google Scholar 

  • Vasilopoulos, G., Zezas, A., Antoniou, V., Haberl, F.: Mon. Not. R. Astron. Soc. 470, 4354 (2017)

    ADS  Google Scholar 

  • Walter, R., Lutovinov, A.A., Bozzo, E., Tsygankov, S.S.: Astron. Astrophys. Rev. 23, 2 (2015)

    ADS  Google Scholar 

  • Wang, J., Zhang, C.M., Zhao, Y.H., et al.: Astron. Astrophys. 526, A88 (2011)

    ADS  Google Scholar 

  • Waters, L.B.F.M., van Kerkwijk, M.H.: Astron. Astrophys. 223, 196 (1989)

    ADS  Google Scholar 

  • Wheaton, W.A., Doty, J.P., Primini, F.A., et al.: Nature 282, 240 (1979)

    ADS  Google Scholar 

  • White, N.E., Mason, K.O., Sanford, P.W., Murdin, P.: Mon. Not. R. Astron. Soc. 176, 201 (1976)

    ADS  Google Scholar 

  • Wilson, C.A., Finger, M.H., Coe, M.J., Negueruela, I.: Astrophys. J. 584, 996 (2003)

    ADS  Google Scholar 

  • Xu, X.T., Li, X.D.: Astrophys. J. 872, 102 (2019)

    ADS  Google Scholar 

  • Yamamoto, T., Nakajima, M., Yamaoka, K., et al.: The Astronomer’s Telegram, No. 3070, 1 (2010)

  • Yamamoto, T., Sugizaki, M., Mihara, T., et al.: Publ. Astron. Soc. Jpn. 63, 751 (2011)

    Google Scholar 

  • Yamamoto, T., Mihara, T., Sugizaki, M., et al.: Publ. Astron. Soc. Jpn. 66, 59 (2014)

    ADS  Google Scholar 

  • Yang, J., Laycock, S.G.T., Christodoulou, D.M., et al.: Astrophys. J. 839, 119 (2017)

    ADS  Google Scholar 

  • Ye, C.Q., Wang, D.H., Zhang, C.M.: Astrophys. Space Sci. 83, 230 (2019)

    Google Scholar 

  • Zhang, C.M.: In: Alsabti, A.W., Murdin, P. (eds.) Handbook of Supernovae, p. 1375. Springer, Berlin (2016)

    Google Scholar 

  • Zhang, C.M., Kojima, Y.: Mon. Not. R. Astron. Soc. 366, 137 (2006)

    ADS  Google Scholar 

  • Zhang, S., Qu, J.L., Song, L.M., Torres, D.F.: Astrophys. J. 630, L65 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11703003, No. U1938117 and No. U1731238), the Guizhou Provincial Science and Technology Foundation (Grant No. [2020]1Y016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Hua Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Firstly, the magnetosphere-disk radius \(R_{\mathrm{M}} \) is given by

$$ R_{\mathrm{M}}=\phi R_{\mathrm{A}}, $$
(9)

where \(\phi =0.5\) is the empirical ratio coefficient, and \(R_{\mathrm{A}}\) is the Alfvén radius (Shapiro and Teukolsky 1983):

$$ R_{\mathrm{A}}= 1.7\times 10^{8} {\mathrm{(cm)}} \dot{M}_{18}^{-\frac{2}{7}}[B_{12}R_{6}^{3}]^{ \frac{4}{7}}m^{-\frac{1}{7}}, $$
(10)

where the reduced parameters are given as \(\dot{M}_{18}=\frac{\dot{M}}{10^{18}\,\mathrm{g\cdot s^{-1}}}\), \(B_{12}= \frac{B}{10^{12}\,{\mathrm{G}}}\), \(R_{6}=\frac{R}{10^{6}\,{\mathrm{cm}}}\) and \(m=\frac{M}{1\,\mathrm{M}_{\odot }}\). Substituting equation (9) and (10) into equation (3), and adopting the NS moment of inertia as \(I=\frac{2}{5}MR^{2}\), one can obtain the time derivative of the NS spin angular velocity:

$$\begin{aligned} \dot{\Omega }\equiv \frac{d \Omega }{dt}=k\times B_{12}^{\frac{2}{7}}, \end{aligned}$$
(11)

where \(k = 1.87\times 10^{-10} \dot{M}_{18}^{\frac{6}{7}}m^{-\frac{4}{7}}{R_{6}^{- \frac{8}{7}}}\phi ^{\frac{1}{2}}\).

Secondly, equation (2) can be described as:

$$\begin{aligned} B_{12}=\frac{B_{012}}{1+\frac{\Delta M}{m_{B}}}= \frac{B_{012}}{1+\frac{\dot{M}t}{m_{B}}}, \end{aligned}$$
(12)

where \(t\) is the accretion time. Substituting equation (12) into equation (11), one can obtain

$$\begin{aligned} \dot{\Omega }=k \times [\frac{B_{012}}{1+\frac{\dot{M}t}{m_{B}}}]^{ \frac{2}{7}}. \end{aligned}$$
(13)

By integrating the above equation with \(t\), it can infer the expression of the NS spin angular velocity:

$$\begin{aligned} \begin{aligned} \Omega -\Omega _{0} & = \xi \times B_{012}^{\frac{2}{7}}[(1+ \frac{\dot{M}t}{m_{B}})^{\frac{5}{7}}-1] \\ &= \xi \times B_{012}^{\frac{2}{7}}[(1+\frac{\Delta M}{m_{B}})^{ \frac{5}{7}}-1], \end{aligned} \end{aligned}$$
(14)

where \(\xi =\frac{7}{5}\,k\times (\frac{m_{B}}{\dot{M}})\), and \(\Omega _{0}=\frac{2\pi }{P_{0}}\) is the initial NS angular velocity. If setting \(\Omega _{0}\approx 0\) (the initial NS spin period is set \(P_{0}=1000\) s in the calculation), then the \(B-P\) evolution of the accretion NSs can be described as:

$$\begin{aligned} \begin{aligned} P &= 2\pi \xi ^{-1} \times B_{012}^{-\frac{2}{7}}[(1+ \frac{\dot{M}t}{m_{B}})^{\frac{5}{7}}-1]^{-1} \\ &= 2\pi \xi ^{-1} \times B_{012}^{-\frac{2}{7}}[( \frac{B_{012}}{B_{12}})^{\frac{5}{7}}-1]^{-1}. \end{aligned} \end{aligned}$$
(15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, CQ., Wang, DH., Zhang, CM. et al. Exploring the accretion-induced evolution of the spin period and magnetic field strength of Be/X-ray Pulsars. Astrophys Space Sci 365, 126 (2020). https://doi.org/10.1007/s10509-020-03841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03841-2

Keywords

Navigation