Skip to main content
Log in

Effect of Mild Traumatic Brain Injury on Behavioral Reactions and Neocortical Morphology in Rats

  • MORPHOLOGY AND PATHOMORPHOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The original weight-drop model was employed to examine the effect of mild traumatic brain injury (TBI) on behavioral phenotype and neocortical morphology in rats. The neurological examination of rats with moderate TBI revealed the focal symptoms corresponding to pronounced neurological disorders, whereas in rats after mild TBI, there were only minor coordination disorders. On day 7 after injury, the rats with mild TBI demonstrated enhanced anxiety assessed by conditioned passive avoidance response. The morphometric analysis of the brain tissues revealed narrowing of the capillaries and increased score of hyperchromic neocortical neurons, which attested to cerebral hypoxia. The manifestations of mild TBI in original rat model demonstrated a close similarity to the symptoms of TBI in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radkov IV, Plekhova NG, Dyujzen IV, Zinovev SV, Baryshev AN. Patent RU No. 2725287. Method for simulating brain contusion of mild degree. Bull. No. 19. Published June 30, 2020.

  2. Semchenko VV, Stepanov SS, Ereview SI. Structural and functional recovery of the nervous tissue of the brain in the post-ischemic period from the standpoint of view of provisory in reparative histogenesis. Tikhookean. Med. Zh. 2016;(2):98-102. Russian.

    Google Scholar 

  3. Radkov IV, Laptev VV, Plekhova NG. Technologies of modeling the diffuse traumatic brain injury. Sovremen. Probl. Nauki Obrazovaniya. 2018;(4):148. Russian.

    Google Scholar 

  4. Dixon KJ. Pathophysiology of Traumatic Brain Injury. Phys. Med. Rehabil. Clin. N. Am. 2017;28(2):215-225. https://doi.org/10.1016/j.pmr.2016.12.001

    Article  PubMed  Google Scholar 

  5. Hemphill MA, Dauth S, Yu CJ, Dabiri BE, Parker KK. Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron. 2015;85(6):1177-11792. https://doi.org/10.1016/j.neuron.2015.02.041

    Article  CAS  PubMed  Google Scholar 

  6. Ma M, Matthews BT, Lampe JW, Meaney DF, Shofer FS, Neumar RW. Immediate short-duration hypothermia provides long-term protection in an in vivo model of traumatic axonal injury. Exp. Neurol. 2009;215(1):119-127. https://doi.org/10.1016/j.expneurol.2008.09.024

    Article  PubMed  Google Scholar 

  7. McIntosh AS, Patton DA, Fréchède B, Pierré PA, Ferry E, Barthels T. The biomechanics of concussion in unhelmeted football players in Australia: a case-control study. BMJ Open. 2014;4(5):e005078. https://doi.org/10.1136/bmjopen-2014-005078

  8. Mychasiuk R, Farran A, Angoa-Perez M, Briggs D, Kuhn D, Esser MJ. A novel model of mild traumatic brain injury for juvenile rats. J. Vis. Exp. 2014:(94):51820. https://doi.org/10.3791/51820

    Article  Google Scholar 

  9. Narayana PA. White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion. 2017; 2(2):CNC35. https://doi.org/10.2217/cnc-2016-0028

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ngamdee K, Noipa T, Martwiset S, Tuntulani T, Ngeontae W. Enhancement of sensitivity of glucose sensors from alizarin– boronic acid adducts in aqueous micelles. Sensors and Actuators B: Chemical. 2011;160(1):129-138. https://doi.org/10.1016/j.snb.2011.07.023

    Article  CAS  Google Scholar 

  11. Pascual JM, Prieto R. Ch. 133: Surgical management of severe closed head injury in adults operative neurosurgery. Schmidek and Sweet Operative Neurosurgical Technique. Vol. 2. Elsevier, 2012. P. 1513-1538.

  12. Skottnik L, Linden DEJ. Mental Imagery and Brain Regulation- New Links Between Psychotherapy and Neuroscience. Front. Psychiatry. 2019;10:779. https://doi.org/10.3389/fpsyt.2019.00779

    Article  PubMed  PubMed Central  Google Scholar 

  13. Smith DH. Neuromechanics and Pathophysiology of Diffuse Axonal Injury in Concussion. Bridge (Wash DC). 2016;46(1):79-84.

  14. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 2013;14(2):128-142. https://doi.org/10.1038/nrn3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamamoto S, Levin HS, Prough DS. Mild, moderate and severe: terminology implications for clinical and experimental traumatic brain injury. Curr. Opin. Neurol. 2018;31(6):672-680. https://doi.org/10.1097/WCO.0000000000000624

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Plekhova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 170, No. 11, pp. 640-645, November 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhova, N.G., Radkov, I.V., Zinoviev, S.V. et al. Effect of Mild Traumatic Brain Injury on Behavioral Reactions and Neocortical Morphology in Rats. Bull Exp Biol Med 170, 672–676 (2021). https://doi.org/10.1007/s10517-021-05130-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05130-6

Key Words

Navigation