Skip to main content

Advertisement

Log in

Application of Bayesian Inference using Gibbs Sampling to Item-Response Theory Modeling of Multi-Symptom Genetic Data

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Several “genetic” item-response theory (IRT) models are fitted to the responses of 1086 adolescent female twins to the 33 multi-category item Mood and Feeling Questionnaire relating to depressive symptomatology in adolescence. A Markov-chain Monte Carlo (MCMC) algorithm is used within a Bayesian framework for inference using Gibbs sampling, implemented in the program WinBUGS 1.4. The final model incorporated separate genetic and non-shared environmental traits (“A and E”) and item-specific genetic effects. Simpler models gave markedly poorer fit to the observations judged by the deviance information criterion (DIC). The common genetic factor showed major loadings on melancholic items, while the environmental factor loaded most highly on items relating to self-deprecation. The MCMC approach provides a convenient and flexible alternative to Maximum Likelihood for estimating the parameters of IRT models for relatively large numbers of items in a genetic context. Additional benefits of the IRT approach are discussed including the estimation of latent trait scores, including genetic factor scores, and their sampling errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Akaike (1974) ArticleTitleA new look at statistical model identification IEEE Trans. Autonomic Control 19 716–723

    Google Scholar 

  • A. Angold et al. (1995) ArticleTitleThe development of a short questionnaire for use in epidemiological studies of depression in children and adolescents Int. J. Meth. Psychiatry Res. 5 1–12

    Google Scholar 

  • Besag, J. E. (2000). Markov Chain Monte Carlo for Statistical Inference. Working Paper # 9. WA: Center for Statistics and Social Sciences, University of Washington

  • D. I. Boomsma P. C. M. Molenaar J. F. Orlebeke (1990) ArticleTitleEstimation of individual genetic and environmental factor scores Genet. Epidemiol. 7 83–91 Occurrence Handle10.1002/gepi.1370070115 Occurrence Handle2184093 Occurrence Handle1:STN:280:By%2BB38fotVU%3D

    Article  PubMed  CAS  Google Scholar 

  • S. P. Brooks (1998) ArticleTitleMarkov Chain Monte Carlo and its applications The Statistician 47 69–100

    Google Scholar 

  • M. Creutz (1979) ArticleTitleConfinement and the critical dimensionality of space-time Phys. Rev. Lett. 43 553–556 Occurrence Handle1:CAS:528:DyaE1MXlsVOhu70%3D

    CAS  Google Scholar 

  • K. A. Do B. M. Broom P. Kuhnert D. L. Duffy A. A. Todorov S. A. Treloar N. G. Martin (2000) ArticleTitleGenetic analysis of the age at menopause by using estimating equations and Bayesian random effects models Statist. Med. 19 1217–1235 Occurrence Handle10.1002/(SICI)1097-0258(20000515)19:9<1217::AID-SIM421>3.0.CO;2-Q Occurrence Handle1:STN:280:DC%2BD3c3lvFOhsQ%3D%3D

    Article  CAS  Google Scholar 

  • L. J. Eaves N. G. Martin A. C. Heath K. S. Kendler (1987) ArticleTitleTesting genetic models for multiple symptoms: an application to the genetic analysis of liability to depression Behav. Genet. 17 331–341 Occurrence Handle10.1007/BF01068135 Occurrence Handle3675525 Occurrence Handle1:STN:280:BieD2cbls1U%3D

    Article  PubMed  CAS  Google Scholar 

  • L. J. Eaves J. L. Silberg J. M. Meyer H. H. Maes E. Simonoff A. Pickles M. Rutter M. C. Neale C. Reynolds M. Erickson A. Heath R. Loeber K. R. Truett J. K. Hewitt (1997) ArticleTitleGenetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia twin study of adolescent behavioral development J. Child Psychol. Psychiatry 38 965–980 Occurrence Handle9413795 Occurrence Handle1:STN:280:DyaK1c%2FnsFOitA%3D%3D

    PubMed  CAS  Google Scholar 

  • L. J. Eaves A. Erkanli (2003) ArticleTitleMarkov Chain Monte Carlo approaches to analysis of genetic and environmental components of human developmental change and GxE Interaction Behav. Genet. 33 279–299 Occurrence Handle12837018

    PubMed  Google Scholar 

  • L. J. Eaves J. L. Silberg A. Erkanli (2003) ArticleTitleResolving multiple epigenetic pathways to adolescent depression J. Child Psychol. Psychiatry 44 1006–1014 Occurrence Handle10.1111/1469-7610.00185 Occurrence Handle14531583

    Article  PubMed  Google Scholar 

  • Fraser, C. (1988) NOHARM: a computer program for fitting both unidimensional and multidimensional normal ogive models of latent trait theory. NSW: University of New England

  • A. E. Gelfand A. M. F. Smith (1990) ArticleTitleSampling based approaches to calculating marginal densities J. Am. Statist. Assoc. 85 398–409

    Google Scholar 

  • Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Institute of Electrical and Electronics

  • W. R. Gilks S. Richardson D. Spielgelhalter (1996) Markov Chain Monte Carlo in Practice Chapman and Hall London

    Google Scholar 

  • J. K. Hewitt J. L. Silberg M. L. Rutter E. Simonoff J. M. Meyer H. H. Maes A. R. Pickles M. C. Neale R. Loeber M. T. Erickson K. S. Kendler A. C. Heath K. R. Truett C. A. Reynolds L. J. Eaves (1997) ArticleTitleGenetics and developmental psychopathology: 1. Phenotypic assessment in The Virginia Twin Study of Adolescent Behavioral Development J. Child Psychol. Psychiatry 38 943–963 Occurrence Handle9413794 Occurrence Handle1:STN:280:DyaK1c%2FnsFOitw%3D%3D

    PubMed  CAS  Google Scholar 

  • J. L. Jinks D. W. Fulker (1970) ArticleTitleComparison of the biometrical genetical, MAVA and classical approaches to the analysis of human behavior Psychol. Bull. 73 311–349 Occurrence Handle5528333 Occurrence Handle1:STN:280:CS6D3cvmvVA%3D

    PubMed  CAS  Google Scholar 

  • F. M. Lord M. R. Novick (1968) Statistical Theories of Mental Test Scores Addison-Wesley New York

    Google Scholar 

  • N. G. Martin L. J. Eaves (1977) ArticleTitleThe genetical analysis of covariance structure Heredity 38 79–95 Occurrence Handle268313 Occurrence Handle1:STN:280:CSiB2cfpslU%3D

    PubMed  CAS  Google Scholar 

  • Nelder, J. A., and McCullagh, P. (1989) Generalized Linear Models (2nd Ed.), Chapman and Hall/CRC Press.

  • L. K. Muthén B. Muthén (2001) Mplus User’s Guide Muthén & Muthén Los Angeles, CA

    Google Scholar 

  • M. C. Neale L. Cardon (1992) Methodology for Genetic Studies of Twins and Families Kluwer Academic Publishers Dodrecht

    Google Scholar 

  • B. D. Ripley (1979) ArticleTitleAlgorithm AS 137: simulating spatial patterns: dependent samples from a multivariate density Appl. Statist. 28 109–112

    Google Scholar 

  • E. Simonoff A. R. Pickles J. M. Meyer J. L. Silberg H. H. Maes R. Loeber M. L. Rutter J. K. Hewitt L. J. Eaves (1997) ArticleTitleThe Virginia Twin Study of Adolescent Behavioral Development: influences of age, gender and impairment on rates of disorder Arch. Gen. Psychiatry 54 801–808 Occurrence Handle9294370 Occurrence Handle1:STN:280:ByiH2c%2Fgs1Y%3D

    PubMed  CAS  Google Scholar 

  • D. J. Spielgelhalter A. Thomas N. G. Best (2003) WinBUGS version 1.4 User Manual MRC Biostatistics Unit Cambridge

    Google Scholar 

  • D. J. Spiegelhalter N. G. Best B. P. Carlin A. Linde Particlevan der (2001) Bayesian measures of model complexity and fit Technical Report Medical Research Council Biostatistics Unit Cambridge, UK

    Google Scholar 

  • D. Thissen (1995) Multlog 6.3: A computer program for multiple, categorical item analysis and test scoring using item response theory Scientific Software, Inc Chicago

    Google Scholar 

  • L. Tierney (1994) ArticleTitleMarkov chains for exploring posterior distributions (with Discussion) Ann. Statist. 22 1701–1762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindon Eaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaves, L., Erkanli, A., Silberg, J. et al. Application of Bayesian Inference using Gibbs Sampling to Item-Response Theory Modeling of Multi-Symptom Genetic Data. Behav Genet 35, 765–780 (2005). https://doi.org/10.1007/s10519-005-7284-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-7284-z

Keywords

Navigation