Skip to main content

Advertisement

Log in

Enhancing health span: muscle stem cells and hormesis

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Sarcopenia is a significant public health and medical concern confronting the elderly. Considerable research is being directed to identify ways in which the onset and severity of sarcopenia may be delayed/minimized. This paper provides a detailed identification and assessment of hormetic dose responses in animal model muscle stem cells, with particular emphasis on cell proliferation, differentiation, and enhancing resilience to inflammatory stresses and how this information may be useful in preventing sarcopenia. Hormetic dose responses were observed following administration of a broad range of agents, including dietary supplements (e.g., resveratrol), pharmaceuticals (e.g., dexamethasone), endogenous ligands (e.g., tumor necrosis factor α), environmental contaminants (e.g., cadmium) and physical agents (e.g., low level laser). The paper assesses both putative mechanisms of hormetic responses in muscle stem cells, and potential therapeutic implications and application(s) of hormetic frameworks for slowing muscle loss and reduced functionality during the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from: Calabrese and Baldwin (1998)

Fig. 2

Modified from: Chen et al. (2019) *P ≤ 0.05

Fig. 3

Modified from: Hosseini et al. (2016) *P ≤ 0.05

Fig. 4

Modified from Wang et al. (2016a) *P ≤ 0.05

Fig. 5

Modified from: Bosutti and Degens (2015) *P ≤ 0.05

Fig. 6

Modified from: Wang et al. (2016b) *P ≤ 0.05

Fig. 7

Modified from: Orzechowski et al. (2002b) *P ≤ 0.05

Fig. 8

Modified from: Orzechowski et al. (2002b) *P ≤ 0.05

Fig. 9

Modified from: Orzechowski et al. (2002b) *P ≤ 0.05

Fig. 10

Modified from: Orzechowski et al. (2002b) *P ≤ 0.05

Fig. 11

Modified from: Caporossi et al. (2003)

Fig. 12

Modified from: Soltow et al. (2010) *P ≤ 0.05

Fig. 13

Modified from: Chen et al. (2007) *P ≤ 0.05

Fig. 14

Modified from: Glass et al. (2011) *P ≤ 0.05

Fig. 15

Modified from: Glass et al. (2011) *P ≤ 0.05

Fig. 16

Modified from: Xu et al. (2008) *P ≤ 0.05

Fig. 17

Modified from: Salgarella et al. (2017) *P ≤ 0.05

Fig. 18

Modified from: Yano and Marcondes (2005) *P ≤ 0.05

Similar content being viewed by others

References

  • Abe MK, Chao TS, Solway J, Rosner MR, Hershenson MB (1994) Hydrogen peroxide stimulates mitogen-activated protein kinase in bovine tracheal myocytes: implications for human airway disease. Am J Respir Cell Mol Biol 11:577–585

    Article  CAS  PubMed  Google Scholar 

  • Abreu P, Serna JDC, Munhoz AC, Kowaltowski AJ (2020) Calorie restriction changes muscle satellite cell proliferation in a manner independent of metabolic modulation. Mech Age Dev 192:111362

    Article  CAS  Google Scholar 

  • Abrunhosa VM, Soares CP, Possidonio ACB, Alvarenga AV, Costa-Felix RP, Costa ML (2014) Induction of skeletal muscle differentiation in vitro by therapeutic ultrasound. Ultrasound Med Biol 40:504–512

    Article  PubMed  Google Scholar 

  • Alvarez B, Quinn LS, Busquets S, Quiles MT, Lopez-Soriano FJ, Argiles JM (2002) Tumor necrosis factor-α exerts interleukin-6-dependent and -independent effects on cultured skeletal muscle cells. Biochim Biophys Acta 1542:66–72

    Article  CAS  PubMed  Google Scholar 

  • Alway SE, Myers MJ, Mohamed JS (2014) Regulation of satellite cell function on sarcopenia. Aging Neurosci 6:246

    Google Scholar 

  • Anderson JE (2000) A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assis L, Moretti AI, Abrahao TB, de Souza HP, Hamblin MR, Parizotto NA (2013) Low-level laser theapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci 28:947–955

    Article  PubMed  Google Scholar 

  • Attele AS, Zhou YP, Xie JT, We JA, Zhang I, Dey I, Pugh W, Rue PA, Polonsky KS, Yuan CS (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589:2189–2138

    Google Scholar 

  • Bareja A, Draper JA, Katz LH, Lee DE, Grimsrud PA, White JP (2021) Chronic caloric restriction maintains a youthful phosphoproteome in aged skeletal muscle. Mech Age Dev 195:111443

    Article  CAS  Google Scholar 

  • Betters JL, Lira VA, Drenning JA, Soltow QA, Criswell DS (2008) Supplemental nitric oxide augments satellite cell activity on cultured modifiers from aged mice. Exp Gerontol 43:10941101

    Article  CAS  Google Scholar 

  • Bosutti A, Degens H (2015) The impact of resveratrol and hydrogen peroxide a muscle cell plasticity shows a dose-dependent interaction. Sci Rep 5:8093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown JD, Hancock CR, Mongillo AD, Baron JB, Digiovanni RA, Parcell AC, Winder WW, Thomson DM (2011) Effect of LKB1 deficiency on mitochondrial content, fiber type, and muscle performance in the mouse diaphragm. Acta Physiol 201:457–466

    Article  CAS  Google Scholar 

  • Brunnelli RM, Rodrigues NC, Ribeiro DA, Fernandes K, Magri A, Assis L, Parizotto NA, Cliquet A Jr, Renno AC, Abreu DC (2014) The effects of 780-nm low level laser therapy on muscle healing process after cryolesion. Lasers Med Sci 19:91–96

    Article  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2011) Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem 30:2658–2673

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2013) Hormetic mechanisms. Crit Rev Toxicol 43:580–606

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2014) The dose-response: a fundamental concept in toxicology. In: Hayes AW, Kruger CL (eds) Principles and methods of toxicology, 6th edn. CRC Press, Boca Raton, pp 89–140

    Google Scholar 

  • Calabrese EJ (2016a) Preconditioning is hormesis Part I. Pharm Res 110:265–275

    Article  CAS  Google Scholar 

  • Calabrese EJ (2016b) Preconditioning is hormesis part II: How the conditioning dose mediates protection: dose optimization within temporal and mechanistic frameworks. Pharm Res 110:265–275

    Article  CAS  Google Scholar 

  • Calabrese EJ (2021a) Hormesis and adult adipose-derived stem cells. Pharm Res 172:105802

    Article  CAS  Google Scholar 

  • Calabrese EJ (2021b) Hormesis and apical papilla stem cells. Chem-Biol Interact

  • Calabrese EJ (2021c) Hormesis and endothelial stem cells. Dose Res 20(1):15593258211068625

    Google Scholar 

  • Calabrese EJ (2021d) Hormesis and Bone Marrow Stem Cells: enhancing cell proliferation, differentiation and resilience to inflammatory stress. Chem-Biol Inter 351:109730

    Article  CAS  Google Scholar 

  • Calabrese EJ (2021e) Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharm Res 173:105914

    Article  CAS  Google Scholar 

  • Calabrese EJ (2021f) Induced pluripotent stem cells and hormesis. Dose Res 2022:1–9

    Google Scholar 

  • Calabrese EJ (2021g) Hormesis mediated acquired resilience: using plant-derived chemical to enhance health. Ann Rev Food Sci Tech 12:355–381

    Article  Google Scholar 

  • Calabrese EJ (2022) Hormesis—mouse embryonic stem cells. Chem Biol Inter 352:109783

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (1998) A general classification of U-shaped dose-response relationships in toxicology and their mechanistic foundations. Hum Exper Toxicol 17:353–364

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin L (2000a) Chemical hormesis: its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:2–31

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000b) The marginalization of hormesis. Hum Exp Toxicol 19:32–40

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000c) Its historical foundations as a biological hypothesis. Hum Exp Toxicol 19:41–75

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000d) Radiation hormesis: the demise of a legitimate hypothesis. Hum Exp Toxicol 19:76–84

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000e) Tales of two similar hypotheses: the rise and fall of chemical and radiation hormesis. Hum Exp Toxicol 19:85–97

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Hum Exp Toxicol 21:91–97

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Blain RB (2011a) The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Reg Toxicol Pharm 61:73–81

    Article  CAS  Google Scholar 

  • Calabrese EJ, Mattson MP (2011b) Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal 5:25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ, Mattson MP (2017) How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ, Agathoeous E, Kapoor R, Dhawan G, Calabrese V, Giordano J (2021a) Hormesis and neural stem cells. Free Radic Biol Med 178L314–329

  • Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V (2021b) Human dental pulp cells and hormesis. Aging Res Rev 101540

  • Caporossi D, Ciafre SA, Pittaluga M, Savini I, Farace MG (2003) Cellular responses to H2O2 and bleomycin-induced oxidative stress in L6C5 rat myoblasts. Free Radic Biol Med 35(11):1355–1364

    Article  CAS  PubMed  Google Scholar 

  • Cerletti M, Jang YC, Finley LWS, Haigis MC, Wagers AJ (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy MV, Booth FW, Spangenburg EE (2001) The molecular responses of skeletal muscle satellite cells to continuous expression of IGF-1: implications for the rescue of induced muscular atrophy in aged rats. Int J Sport Nutr Exerc Metab 11(Suppl):S44–S48

    Article  CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Chen SE, Gerkern E, Zhang Y, Mohan RK, Li AS, Reid MB, Li YP (2005) Role of TNF-α signaling in regeneration of cardiotoxin-injured muscle. Am J Physiol-Cell Physiol 289:C1179–C1187

    Article  CAS  PubMed  Google Scholar 

  • Chen S-E, Jin B, Li Y-P (2007) TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol-Cell Physiol 292(5):C1660–C1671

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Yu W, Fu YC, Wang X, Li JL, Wang W (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FaxO1 pathway. Biochem Biophys Res Commun 378:389–393

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Guo Y, Jia G, Zhao H, Liu G, Huang Z (2019) Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway. Food Funct 10:259–265

    Article  CAS  PubMed  Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for a defense against oxidative stress and heat shock proteins in Salmonella typhimurium. Cell 41:753–762

    Article  CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  PubMed  Google Scholar 

  • Coolican SA, Samuel DS, Ewton DZ, McWasde FJ, Florin JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272:6653–6662

    Article  CAS  PubMed  Google Scholar 

  • Davies KJA (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. UBMB Life 48:41–47

    Article  CAS  Google Scholar 

  • Davies JMS, Lowry CV, Davies KJA (1995) Transient adaptation to oxidative stresss in yeasts. Arch Biochem Biophys 317:1–6

    Article  CAS  PubMed  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:57–521

    Google Scholar 

  • Faulkner JA, Brooks SV, Zerba E (1995) Muscle atrophy and weakness with aging: contraction-induced injury as an underlying mechanism. J Gerontol A Biol Sci Med Sci 50:124–129

    PubMed  Google Scholar 

  • Ferraresi O, Kalppert B, Avci P, Huang Y-Y, de Sousa MVP, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3–6 h. Photochem Photobiol 91:411–416

    Article  CAS  PubMed  Google Scholar 

  • Fisher BD, Hiller CM, Rennie SG (2003) A comparison of continuous ultra-sound and pulsed ultrasound on soft tissue injury markers in the rat. J Phys Ther Sci 15:65–70

    Article  Google Scholar 

  • Gaubin Y, Vaissade R, Croute F, Beau B, Soleihavoup J-P, Murat J-C (2000) Implications of free radicals and glutathione in the mechanisms of calcium-induced expression of stress proteins in the A549 human lung cell-line. Biochim Biophys Act 1495:4–13

    Article  CAS  Google Scholar 

  • Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163(4):1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Lertwattanarak R, Garduno JD, Galeana JJ, Li J, Zamarripa F, Lancaster JL, Mohan S, Hussey S, Musi N (2015) Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol Series A 70(2):232–246

    Article  CAS  Google Scholar 

  • Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J (2011) TNF-α promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. PNAS 108:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF -kappa B-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366

    Article  CAS  PubMed  Google Scholar 

  • Harry LE, Sandison A, Paleolog EM, Hansen U, Pearse MF, Nanchahal J (2008) Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res 26:1238–1244

    Article  PubMed  Google Scholar 

  • Harry LE, Sandison A, Pearse MF, Paleoolog EM, Nanchahal J (2009) Comparison of the vascularity of fasciocutaneous tissue and muscle for coverage of open tibial fractures. Plast Reconstr Surg 124:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    Article  CAS  PubMed  Google Scholar 

  • Herbert JM, Bono F, Savi P (1996) The mitogenic effect of H2O2 for vascular smooth muscle cells is mediated by an increase of the affinity of basic fibroblast growth factor for its receptor. FEBS Lett 395:43–47

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SA, Tabandeh MR, Namin SAM (2016) Promoting effect of ginsenoside Rb1 for GLUT-4 gene expression and cellular synthesis in C2Cl2 muscle cells. Intern J Pharm Res All Sci 5(2):151–158

    CAS  Google Scholar 

  • Ikeda K, Takayama T, Suzuki N, Shimada K, Otsuka K, Ito K (2006) Effects of low-intensity pulsed ultrasound on the differentiation of C2Cl2 cells. Life Sci 79:1936–1943

    Article  CAS  PubMed  Google Scholar 

  • Jang YC, Sinha M, Cerletti M, Dall’Osso C, Wagers AJ (2011) Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb Symp Quant Biol 76:101–111

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ (2008) Redox regulation of skeletal muscle. IUBMB 60:497–501

    Article  CAS  Google Scholar 

  • Jariwalla RJ (2001) Rice-bran products: phytonutrients with potential applications in preventive and clinical medicine. Drugs Exp Clin Res 27:17–26

    CAS  PubMed  Google Scholar 

  • Joanisse S, Sniders T, Nederveen JP, Parise G (2018) The impact of aerobic exercise on the muscle stem cell response. Exer Sport Sci Rev 46(5):180–187

    Article  Google Scholar 

  • Kumar A, Murphy R, Robinson P, Wei L, Boriek SM (2004) Cyclic mechanical stain inhibits skeletal myogenesis through activation of focal adhesion kinase., Rac-1 GTPase, and NF-kB transcription factor. Faseb J 18:1524–1535

    Article  CAS  PubMed  Google Scholar 

  • Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2010) Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 33:1497–1499

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Kim DG, Shin NY, Song WK, Kwon H, Chung CH, Kang MS (1997) NF-kappa B-dependent expression of nitric oxide synthase is required for membrane fusion of chick embryonic myoblasts. Biochem J 324:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y-P (2003) TNF-α is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285:C370–C376

    Article  CAS  PubMed  Google Scholar 

  • Lim JW, Kim H, Kim KH (2001) Nuclear factor kappa b regulates cyclooxygenase-2-expression and cell proliferation in human gastric cancer cells. Lab Invest 81:349–360

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang P, Liu X, He D, Liang C, Yu Y (2014) Exogenous NAD+ supplementation protects H9c2 cardiac myoblasts against hypoxia/re-oxygenation injury via Sirt1-p53 pathway. Fund Clin Pharm 28:180–189

    Article  CAS  Google Scholar 

  • Long JH, Lira VA, Soltow QA, Bettes JL, Sellman JE, Criswell DS (2006) Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production. J Muscle Res Cell Motil 27:577–584

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Martins RAB, Marcos RL, Leonardo PS, Prianti AC, Muscara MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of low-level laser (Ga-Al-As655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101:283–288

    Article  Google Scholar 

  • Masoro EJ (1998) Hormesis and the antiaging action of dietary restriction. Exper Gerontol 33:61–66

    Article  CAS  Google Scholar 

  • Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruoyl esterases involved in its release and their applications. Crit Rev Biotech 24:59–83

    Article  CAS  Google Scholar 

  • Mehlen P, Hickey E, Weber LA, Arigo AP (1997) Large unphosphorylated aggregates as the active form of Hsp27 which controls intracellular reactive oxygen species and gluthathione levels and generates a protection against TNF-α in NIH-3T3 ras cells. Biochim Biophys Res Commun 241:187–192

    Article  CAS  Google Scholar 

  • Mesquita-Ferrari RA, Alves AN, de Oliveira CV, Artiheiro PP, Bussadori SK, Rocha LA, Nunes FD, Fernandes KPS (2015) Low-level laser irradiation modulates cell viability and creatine kinase activity in C2Cl2 muscle cells during the differentiation process. Lasers Med Sci 30:2209–2213

    Article  PubMed  Google Scholar 

  • Mattson MP (2008) Hormesis defined age. Res Rev 8:1–7

    Google Scholar 

  • Mcleod IA (2004) Low-level laser therapy in athletic training. Hum Kinet-ATT 9:17–21

    Google Scholar 

  • McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60:150–162

    Article  PubMed  Google Scholar 

  • Muralidhara VLK (2014) Ameliorative effects of ferulic acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain. Neurochem Res 39:2501–2515

    Article  PubMed  CAS  Google Scholar 

  • Orzechowski A, Grizard J, Jank M, Gajkowska B, Lokociejewska M, Zaron-Teperek M, Godlewski M (2002a) Dexamethasone-mediated regulation of death and differentiation of muscle cells. Is hydrogen peroxide involved in the process? Reprod Nutr Dev 42:197–216

    Article  CAS  PubMed  Google Scholar 

  • Orzechowski A, Lokociejewska M, Muras P, Hocquette J-F (2002b) Preconditioning with millimolar concentrations of vitamin C or N-acetylcysteine protects L6 muscle cells insulin-stimulated viability and DNA synthesis under oxidative stress. Life Sci 71:1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Xu XY, Liu TC, Zhao XF, Zhang Y, Wen L (2006) Change in the generation of reactive oxygen species in electrical-stimulated C2C12. China J Sports Med 25:46–49

    Google Scholar 

  • Pisconti A, Brunelli S, Di Padova M, De Palma C, Deponti D, Baesso S, Sartonerri V, Cossu G, Clementi E (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol 172:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price NI, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BL, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid MB (2001) Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731

    Article  CAS  PubMed  Google Scholar 

  • Salgarella AR, Cafarelli A, Ricotti L, Capineri L, Dario P, Menciassi A (2017) Optimal ultrasound exposure conditions for maximizing C2Cl2 muscle cell proliferation and differentiation. Ultrasound Med Biol 43(7):1452–1465

    Article  PubMed  Google Scholar 

  • Sadanaga-Akiyoshi P, Yao H, Tanuma SI, Nakahara T, Hong JS, Ibayashi S, Fujishima M (2003) Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochem Res 28:1227

    Article  CAS  PubMed  Google Scholar 

  • Seidki A, Lekouch N, Gamon S, Pineau A (2003) Toxic and essential trace metals in muscle, liver and kidney of bovines from a polluted area of Morocco. Sci Total Environ 317:201–205

    Article  CAS  Google Scholar 

  • Shefer G, Partridge TA, Heslop L, Gross JG, Uri O, Orna H (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Snijders T, Verdijk LB, van Loon LJ (2009) The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Age Res Rev 8:328–338

    Article  Google Scholar 

  • Soltow QA, Lira VA, Betters JL, Long JHD, Sellman JE, Zeanah EH, Criswell DS (2010) Nitric oxide regulates stretch-induced proliferation in C2Cl2 myoblasts. J Muscle Res Cell Motil 31:215–225

    Article  CAS  PubMed  Google Scholar 

  • Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11:693–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatsumi R, Hattori A, Ikeuchi Y, Andersn JE, Allen RE (2002) Release of hepatocyte growth factor from mecaicall stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Bio Cell 13:290a–2918

    Google Scholar 

  • Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, Hattori A, Ikeuchi Y, Allen RE (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 190(6):C1487–C1494

    Article  CAS  Google Scholar 

  • Tinetti ME (2001) Where is the vision for fall prevention? J Am Geriatr Soc 49:676–677

    Article  CAS  PubMed  Google Scholar 

  • Tong DL, Zhang DX, Xiang F, Teng M, Jing XP, Hou JM, Huang YS (2012) Nicotinamide pretreatment protects cardiomyocytes against hypoxia-induced cell death by improving mitochondrial stress. Pharmacology 90:11–18

    Article  CAS  PubMed  Google Scholar 

  • Torrente Y, El Fahime E, Caron NJ, Del Bo R, Belicchi M, Pisati F, Tremblay JP, Bresolin N (2003) Tumor necrosis factor-α (TNF-α) stimulates chemotactic response in mouse myogenic cells. Cell Transp 12:91–100

    Article  CAS  Google Scholar 

  • Trajano LASN, Sergio LPS, Silva CL, Carvalho L, Al M, Stumbo AC, Fonseca AS (2016a) Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts. Laser Phys Lett 13:075601

    Article  CAS  Google Scholar 

  • Trajano LASN, Stumbo AC, Da Silva CL, Al M, Fonscea AS (2016b) Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts. Lasers Med Sci 31:1161–1167

    Article  Google Scholar 

  • Vandenburgh HH, Shansky J, Karlisch P, Solerissi RL (1993) Mechanical stimulation of skeletal muscle generates lipid related second messengers by phospholipase activation. J Cell Physiol 155:63–71

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Dumont N, Rudnicki MA (2014) Muscle stem cells at a glance. J Cell Sci 127:4543–4548

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Liang X, Luo G, Ding M, Liang Q (2016a) Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism. Mol BioSyst 12:2257–2264

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang T, Xi Y, Yang C, Sun C, Li D (2016b) Sirtuin 1 promotes the proliferation of C2C12 myoblast cells via the myostatin signaling pathway. Mol Med Rep 14:1309–1315

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xue R, Sun C, Yang C, Xi Y, Zhang F, He Q, Wang S, Zhao F, Zhang Y, Li D (2016c) SIRT1 regulates C2C12 myoblast cell proliferation by activating Wnt signaling pathway. Int J Clin Exp Pathol 9(3):2857–2868

    CAS  Google Scholar 

  • Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor a in traumatic muscle injury. FASEB J 16:1630–1632

    Article  CAS  PubMed  Google Scholar 

  • Wehrle U, Sterho FT, Du S, Pete D (1994) Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation 58:37–46

    Article  CAS  PubMed  Google Scholar 

  • Wiess AG, Pacifici RE, Davies KJA (1995) Transient adaptation to oxidative stress in mammalian cells. Arch Biochem Biophys 318:231–240

    Article  Google Scholar 

  • Xu X-Y, Liu TC-Y, Duan R, Liu X-G (2003) The effects of low-intensity laser irradiation on the fatigue induced by dysfunction of mitochondria. In: Proc of SPIE od Third international conference on photonics and imaging in biology and medicine. Wuhan, China.

  • Xu X, Zhao X, Liu TC-Y, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2Cl2 induced by electrical stimulation. Photomed Laser Surg 26(3):197–202

    Article  CAS  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passing and differentiation of myogenic cells isolated from dystropic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Chao JL, Lin JG (1996) Reactive oxygen species may participate in mutagenicity and mutational spectrum of cadmium in Chinese hamster oveary-K1 cells. Chem Res Toxicol 9:1360–1367

    Article  CAS  PubMed  Google Scholar 

  • Yang ZF, Yang JG, Gao GH, Hu ZR, Chen HX, Qian HW (2002) Mechanism of bio-effects of low intensity laser radiation. Acta Laser Biol Sinica 11:388–394

    CAS  Google Scholar 

  • Yano CL, Marcondes MCCG (2005) Cadmium chloride-induced oxidative stress in skeletal muscle cells in vitro. Free Rad Biol Med 39:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Yun SN, Moon SJ, Ko SK, Bo Im, Chung SH (2004) Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch Pharm Res 27:790–796

    Article  CAS  PubMed  Google Scholar 

  • Zalin RJ (1987) The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp Cell Res 172(2):265–281

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Pathak JL, Huang W, Zhu C, Li Y, Guan H, Zeng S, Ge L, Shu Y (2020) Metformin enhances osteogenic differentiation of stem cells from human exfoliated deciduous teeth through AMPK pathway. J Tissue Eng Regen Med 14:1869–1879

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-19-1-0413) and ExxonMobil Foundation (S18200000000256). The U.S. Government is authorized to reproduce and distribute for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Calabrese.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calabrese, E.J., Calabrese, V. Enhancing health span: muscle stem cells and hormesis. Biogerontology 23, 151–167 (2022). https://doi.org/10.1007/s10522-022-09949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-022-09949-y

Keywords

Navigation