Skip to main content
Log in

Dispersal of aphids, whiteflies and their natural enemies under photoselective nets

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Integrated Pest Management of insects includes several control tactics, such as the use of photoselective nets, which may reduce the flight activity of insects. Limiting the dispersal of pests such as aphids and whiteflies is important because of their major role as vectors of plant viruses, while a minor impact on natural enemies is desired. In this study, we examined for the first time the dispersal ability of three vector species, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and Myzus persicae (Sulzer) (Hemiptera: Aphididae), in cages covered with photoselective nets. Contrary to the results obtained with aphids, the ability of the whitefly B. tabaci, to reach the target plant was reduced by photoselective nets. In a second set of experiments, the impact of UV-absorbing nets on the visual cues of two important predator species, Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae), was evaluated. The anthocorid was caught in higher numbers in traps placed under regular nets, whereas the mites preferably chose environments in which the UV radiation was attenuated. We have observed a wide range of effects that impedes generalization, although photoselective nets have a positive effect on pest management of whiteflies and aphids under protected environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antignus Y (2000) Manipulation of wavelength dependent behavior of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Res 71:213–220

    Article  PubMed  CAS  Google Scholar 

  • Antignus Y, Lapidot M, Hadar D, Messika Y, Cohen S (1998) Ultraviolet-absorbing screens serve as optical barriers to protect crops from virus and insect pests. J Econ Entomol 91:1401–1405

    Google Scholar 

  • Antignus Y, Nestel D, Cohen S, Lapidot M (2001) Ultraviolet-deficient greenhouse environment affects attraction and flight behaviour. Environ Entomol 30:394–399

    Article  Google Scholar 

  • Atakan E, Bayram A (2011) Distributions of western flower thrips (Thysanoptera: Thripidae) and its predatory bug Orius niger (Hemiptera: Anthocoridae) assessed by coloured sticky traps and plant samplings in cotton. Arch Phytopathol Plant Prot 44:1595–1608

    Article  Google Scholar 

  • Ben-Yakir D, Hadar MD, Offir Y, Chen M, Tregerman M (2008) Protecting crops from pests using OptiNet® and ChromatiNet® shading nets. Acta Hortic 770:205–212

    Google Scholar 

  • Bosco L, Giacometto E, Tavella L (2008) Colonization and predation of thrips (Thysanoptera: Thripidae) by Orius spp. Heteroptera: Anthocoridae) in sweet pepper greenhouses in northwest Italy. Biol Control 44:331–340

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114

    Article  Google Scholar 

  • Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Article  Google Scholar 

  • Castilla N, Montero JI (2008) Environmental control and crop production in Mediterranean greenhouses. Acta Hortic 797:25–36

    Google Scholar 

  • Chiel E, Messika Y, Steinberg S, Antignus Y (2006) The effect of UV-absorbing plastic sheet on the attraction and host location ability of three parasitoids: Aphidius colemani, Diglyphus isaea and Eretmocerus mundus. BioControl 51:65–78

    Article  Google Scholar 

  • Chyzik R, Dobrinin S, Antignus Y (2003) Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31:467–477

    Article  Google Scholar 

  • Colomer I, Aguado P, Medina P, Heredia RM, Fereres A, Belda JE, Viñuela E (2011) Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) in a commercial pepper greenhouse. Pest Manag Sci 67:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Coombe PE (1982) Visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum. Physiol Entomol 7:243–251

    Article  Google Scholar 

  • Costa HS, Robb KL (1999) Effects of ultraviolet-absorbing plastic films on flight behaviour of Bemisia argentifolii (Homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 92:557–562

    Google Scholar 

  • Diaz BM, Biurrún R, Moreno A, Nebreda M, Fereres A (2006) Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. Hortscience 41:711–716

    Google Scholar 

  • Doukas D, Payne CC (2007a) The use of ultraviolet-blocking films in insect pest management in the UK, effects on naturally occurring arthropod pest and natural enemy populations in a protected cucumber crop. Ann Appl Biol 151:221–231

    Article  Google Scholar 

  • Doukas D, Payne CC (2007b) Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J Econ Entomol 100:389–397

    Article  PubMed  Google Scholar 

  • Doukas D, Payne CC (2007c) Effects of UV-blocking films on the dispersal behaviour of Encarsia formosa (Hymenoptera: Aphelinidae). J Econ Entomol 100:110

    Article  PubMed  Google Scholar 

  • Fereres A, Kampmeier GE, Irwin ME (1999) Aphid attraction and preference for soybean and pepper plants infected with Potyviridae. Ann Entomol Soc Am 92:542–548

    Google Scholar 

  • Foster SP, Devine G, Devonshire AL (2007) Insecticide resistance. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, UK, pp 261–285

    Chapter  Google Scholar 

  • Henaut Y, Alauzet C, Dargagnon D, Lambin M (1999) Visual learning in larval Orius majusculus a polyphagous predator. Entomol Exp Appl 90:103–107

    Article  Google Scholar 

  • Kirchner SM, Döring TF, Saucke H (2005) Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). J Insect Physiol 51:1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Kring JB (1972) Flight behaviour of aphids. Annu Rev Entomol 17:461–492

    Article  Google Scholar 

  • Kumar P, Poehling HM (2006) UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ Entomol 35:1069–1082

    Article  Google Scholar 

  • Legarrea S, Karnieli A, Fereres A, Weintraub PG (2010) Comparison of UV-absorbing nets in pepper crops: spectral properties, effects on plants and pest control. Photochem Photobiol 86:324–330

    Article  PubMed  CAS  Google Scholar 

  • Margolies DC, Sabelis MW, Boyer JE (1997) Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitation. J Insect Behav 10:695–709

    Article  Google Scholar 

  • Mochizuki M, Yano E (2007) Olfactory response of the anthocorid predatory bug Orius sauteri to thrips-infested eggplants. Ent Exp Appl 123:57–62

    Article  Google Scholar 

  • Mound LA (1962) Studies on the olfaction and colour sensitivity of Bemisia tabaci (Genn.) (Homoptera, Aleyrodidae). Ent Exp Appl 5:99–104

    Article  Google Scholar 

  • Mutwiwa UN, Borgemeister C, Von Elsner B, Tanau HJ (2005) Effects of UV-absorbing plastic films on greenhouse whitefly (Homoptera: Aleyrodidae). J Econ Entomol 98:1221–1228

    Article  PubMed  Google Scholar 

  • Ohtsuka K, Osakabe MMH (2009) Deleterious effects of UV-B radiation on herbivorous spider mites: they can avoid it by remaining on lower leaf surfaces. Environ Entomol 38:920–929

    Article  PubMed  Google Scholar 

  • Onzo A, Sabelis MW, Hanna R (2010) Effects of ultraviolet radiation on predatory mites and the role of refugees in plant structures. Environ Entomol 39:695–701

    Article  PubMed  Google Scholar 

  • Raviv M, Antignus Y (2004) UV radiation effects on pathogens and insect pest of greenhouse-grown crops. Photochem Photobiol 79:219–226

    Article  PubMed  CAS  Google Scholar 

  • Sal J, Velázquez E, Legarrea S, Aguado P, Fereres A, Morales I, del Estal P, Viñuela E (2009) Influence of UV-absorbing nets in the population of Macrosiphum euphorbiae Thomas and the parasitoid Aphidius ervi (Haliday) in lettuce crops. In: Proceedings of the third international symposium Biological Control Arthropods, Christ Church, New Zealand, 8–13 Feb, 2009, pp 329–337

  • SPSS Inc (2009) SPSS statistical package, 17.0 version, Chicago, SPSS Inc

  • Vaishampayan SM, Kogan M, Waldbauer GP, Woolley JT (1975) Spectral specific responses in the visual behaviour of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Ent Exp Appl 18:344–356

    Article  Google Scholar 

  • van Lenteren JC, Noldus JJ (1990) Whitefly-plant relationships: behavioural and ecological aspects. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept Ltd, Hants, UK, pp 47–89

    Google Scholar 

  • Weintraub PG (2007) Integrated control of pests in tropical and subtropical sweet pepper production. Pest Manag Sci 63:753–760

    Article  PubMed  CAS  Google Scholar 

  • Weintraub PG, Kleitman S, Shapira N, Argov Y, Palevsky E (2006) Efficacy of Phytoseiulus persimilis versus Neoseiulus californicus for controlling spider mites on greenhouse sweet pepper. IOBC/WPRS Bull 29:121–125

    Google Scholar 

  • Weintraub PG, Pivonia S, Gera A (2008) Physical control of leafhoppers. J Econ Entomol 101:1337–1340

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Rafi Mori for his technical assistance; Polysack Plastics Industries Ltd and Meteor Agricultural Nets Ltd for kindly providing the nets of study. We are indebted with Arnon Karnieli and Joaquín Campos for measuring the transmission properties of the nets. Besides, we would like to thank two anonymous reviewers and Patrick De Clercq (Handling Editor of BioControl) for their contribution to improve previous versions of the manuscript. Saioa Legarrea was financially supported by a scholarship I3P-BPD-2006 and the work was funded by the Spanish Ministry of Science and Innovation (Research Grant, PET2006_0021; AGL2007-66399-C03-01/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Legarrea.

Additional information

Handling Editor: Patrick De Clercq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legarrea, S., Weintraub, P.G., Plaza, M. et al. Dispersal of aphids, whiteflies and their natural enemies under photoselective nets. BioControl 57, 523–532 (2012). https://doi.org/10.1007/s10526-011-9430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9430-2

Keywords

Navigation