Skip to main content
Log in

Production of artemisinin by genetically-modified microbes

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Artemisinin, an endoperoxidized sesquiterpene originally extracted from the medicinal plant Artemisia annua L., is a potent malaria-killing agent. Due to the urgent demand and short supply of this new antimalarial drug, engineering enhanced production of artemisinin by genetically-modified or transgenic microbes is currently being explored. Cloning and expression of the artemisinin biosynthetic genes in Saccharomyces cerevisiae and Escherichia coli have led to large-scale microbial production of the artemisinin precursors such as amorpha-4,11-diene and artemisinic acid. Although reconstruction of the complete biosynthetic pathway toward artemisinin in transgenic yeast and bacteria has not been achieved, artemisinic acid available from these transgenic microbes facilitates the subsequent partial synthesis of artemisinin by either chemical or biotransformational process, thereby providing an attractive strategy alternative to the direct extraction of artemisinin from A.annua L. In this review, we update the current trends and summarize the future prospects on genetic engineering of the microorganisms capable of accumulating artemisinin precursors through heterologous and functional expression of the artemisinin biosynthetic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACTs:

Artemisinin-based combination therapies

ADS:

Amorpha-4,11-diene synthase

AMO:

Amorpha-4,11-diene oxidase

CPR:

Cytochrome P450 reductase

CYP/P450:

Cytochrome P450 enzymes

CYP71AV1:

Cytochrome P450 monooxygenase

DMAPP:

Dimethylallyl diphosphate

DXP:

1-deoxy-d-xylulose-5-phosphate

DXR:

1-deoxy-d-xylulose-5-phosphate reductoisomerase

DXS:

1-deoxy-d-xylulose-5-phosphate synthase

ECS:

Epi-cedrol synthase

EST:

Expressed sequence tag

FPP:

Farnesyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

GPP:

Geranyl pyrophosphate

HMG-CoA:

3-hydroxy-3-methylglutaryl coenzyme A

IPP:

Isopentenyl diphosphate

MDR:

Multi-drug resistant

MEP:

Methylerythritol phosphate

MVA:

Mevanolate

RT-PCR:

Reverse transcription-polymerase chain reaction

SS:

Squalene synthase

References

  • Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Photochemistry 48:953–959

    Article  CAS  Google Scholar 

  • Akhila A, Thakur RS, Popli SP (1987) Biosynthesis of artemisinin in Artemisia annua. Phytochemistry 26:1927–1930

    Article  CAS  Google Scholar 

  • Bertea CM, Freije JR, van der Woude H, Verstappen FW, Perk L, Marquez V, de Kraker JW, Posthumus MA, Jansen BJ, de Groot A, Franssen MC, Bouwmeester HJ (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47

    Article  PubMed  CAS  Google Scholar 

  • Bertea CM, Voster A, Verstappen FW, Maffei M, Beekwilder J, Bouwmeester HJ (2006) Isoprenoid biosynthesis in Artemisia annua: cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library. Arch Biochem Biophys 448:3–12

    Article  PubMed  CAS  Google Scholar 

  • Bharel S, Gulati A, Abdin MZ, Srivastava PS, Vishwakarma RA, Jain SK (1998) Enzymatic synthesis of artemisinin from natural and synthetic precursors. J Nat Prod 61:633–636

    Article  PubMed  CAS  Google Scholar 

  • Boumeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, de Kraker JW, Knig WA, Franssen MC (1999) Amorpha-4,11-diene synthase catalyze the first probable step in artemisinin biosynthesis. Phytochemistry 52:843–854

    Article  Google Scholar 

  • Brown GD, Sy LK (2004) In vitro transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159

    Article  CAS  Google Scholar 

  • Cane DE (1981) Biosynthesis of sesquiterpene. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds Vol 1 and 2. John Wiley & Sons, New York, pp 283–374

    Google Scholar 

  • Cane DE, Wu Z, Oliver JS, Hohn TM (1993) Overproduction of soluble trichodiene synthase from Fusarium sporotrichioides in Escherichia coli. Arch Biochem Biophys 300:416–422

    Article  PubMed  CAS  Google Scholar 

  • Carter OA, Peters RJ, Croteau R (2003) Monoterpen biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–433

    Article  PubMed  CAS  Google Scholar 

  • Chang YJ, Song SH, Park SH, Kim SU (2000) Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a terpene synthase involved in artemisinin biosynthesis. Arch Biochem Biophys 383:178–184

    Article  PubMed  CAS  Google Scholar 

  • Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2:674–681

    Article  PubMed  CAS  Google Scholar 

  • Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277

    Article  PubMed  CAS  Google Scholar 

  • Connolly JD, Hill RA (1991) Dictionary of terpenoids. Vol 1, Mono- and Sesquiterpenoids. Chapman and Hall, London

    Google Scholar 

  • Covello PS, Teoh KH, Polichuk DR, Reed DW, Nowak G (2007) Functional genomics and the biosynthesis of artemisinin. Phytochemistry 68:1864–1871

    Article  PubMed  CAS  Google Scholar 

  • Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha piperita L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci USA 94:12833–12838

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville MD, pp 1250–1318

    Google Scholar 

  • DeJong JM, et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    Article  PubMed  CAS  Google Scholar 

  • Dhingra V, Rajoli C, Narasu ML (2000) Partial purification of proteins involved in the bioconversion of arteannuin B to artemisinin. Bioresour Technol 73:279–282

    Article  CAS  Google Scholar 

  • Dhingra V, Narasu ML (2001) Purification and characterization of an enzyme involved in biochemical transformation of arteannuin B to artemisinin from Artemisia annua. Biochem Biophys Res Commun 281:558–561

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    Article  PubMed  CAS  Google Scholar 

  • Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Article  Google Scholar 

  • Duke MV, Paul RN (1994) Localization of artemisinin and artemisitene in foliar tissue of glanded and glandless biotypes of Artemisia annua. Int J Plant Sci 155:365–372

    Article  Google Scholar 

  • Helliwell CA, Poole A, Peacock WJ, Dennis ES (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119:507–510

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Jackson BE, Hart-Wells EA, Matsuda SPT (2003) Metabolic engineering to produce sesquiterpenes in yeast. Org Lett 5:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Kollner TG, Schnee C, Gershenzon J, Degenhardt J (2004) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16:1115–1131

    Article  PubMed  Google Scholar 

  • Korenromp E, Miller J, Nahlen B, Wardlaw T, Young M (2005) World Malaria Report 2005. World Health Organization (WHO), Roll Back Malaria Partnership, Geneva, 2005

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Laughlin JC (2002) Post-harvest drying treatment effects on antimalarial constituents of Artemisia annua L. Acta hortic 576:315–320

    CAS  Google Scholar 

  • Laule O, Furholz A, Chang H-S, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Micro Biotechnol 60:1–11

    Article  CAS  Google Scholar 

  • Liu JM, Ni MY, Fan JF, Tu YY, Wu ZH, Wu YL, Chou WS (1979) Structure and reaction of arteannuin. Acta Chim Sin 37:129–143

    CAS  Google Scholar 

  • Lindahl A-L, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, Brodelius PE (2006) Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett 28:571–580

    Article  PubMed  CAS  Google Scholar 

  • Lommen WJ, Schenk E, Bouwmeester HJ, Verstappen FW (2005) Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annua leaves. Planta Med 72:336–345

    Article  CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  PubMed  CAS  Google Scholar 

  • Martin VJJ, Yoshikuni Y, Keasling JD (2001) The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol Bioeng 75:497–503

    Article  PubMed  CAS  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  PubMed  CAS  Google Scholar 

  • Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE (2000) Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch Biochem Biophys 381:173–180

    Article  PubMed  CAS  Google Scholar 

  • Mutabingwa TK (2005) Artemisinin-based combination therapies (ACTs) best hope for malaria treatment but inaccessible to the needy! Acta Trop 95:305–315

    Article  PubMed  CAS  Google Scholar 

  • Nair MSR, Basile DV (1993) Bioconversion of arteannuin B to artemisinin. J Nat Prod 56:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34:95–106

    Article  PubMed  CAS  Google Scholar 

  • Newman JD, Marshall J, Chang MCY, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691

    Article  PubMed  CAS  Google Scholar 

  • Newton P, White N (1999) Malaria: new development in treatment and prevention. Ann Rev Med 50:179–192

    Article  PubMed  CAS  Google Scholar 

  • Pfleger BF, Pitera DJ, Smolke CD, Keasling JD (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol 24:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Picaud S, Olifsson L, Brodelius PE (2005) Expression, purification and characterization of recombinant amorpha-4,11-diene synthase from Artemisia annua L. Arch Biochem Biophys 436:215–226

    Article  PubMed  CAS  Google Scholar 

  • Pitera DJ, Paddon C, Newman JD, Keasling JD (2007) Rebuilding a balanced heterologous mevalonate pathway for isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  PubMed  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  PubMed  CAS  Google Scholar 

  • Roth RJ, Acton N (1989) A simple conversion of artemisinic acid into artemisinin. J Nat Prod 52:1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Agarwal K, Luthra R, Thakur RS, Sangwan NS (1993) Biotransformation of arteannuic acid into arteannuin B and artemisinin in Artemisia annua. Phytochemistry 34:1301–1302

    Article  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Ann Rev Plant Biol 54:629–667

    Article  CAS  Google Scholar 

  • Schoendorf A, Rithner CD, Williams AM, Croteau RB (2001) Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273:2078–2089

    Article  PubMed  CAS  Google Scholar 

  • Sy LK, Brown GD (2002) The mechanism of the spontaneous autooxidation of dihydroartemisinic acid. Tetrahedron 58:897–908

    Article  CAS  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome- specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416

    Article  PubMed  CAS  Google Scholar 

  • Towler MJ, Weathers PJ (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep, Electronical publication on-line available on Aug 21, 2007, doi: 10.1007/s00299–007-0420-x

  • Wallaart TE, van Uden W, Lubberink HG, Woerdenbag HJ, Pras N, Quax WJ (1999) Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin. J Nat Prod 62:430–433

    Article  PubMed  CAS  Google Scholar 

  • Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Plant Med 66:57–62

    Article  CAS  Google Scholar 

  • Wallaart TE, Boumeester HJ, Hille J, Poppinga L, Maijers NCA (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xia ZQ, Zhou FY, Wu YL, Huang JJ, Wang ZZ (1988) Studies on biosynthesis of artemisinin: the key intermediate-artemisinic acid in biosynthesis of artemisinin and arteannuin B. Acta Chim Sin 46:1152–1153

    CAS  Google Scholar 

  • Weathers PJ, Elkholy S, Wobbe KK (2006) Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoids-rich species. In vitro Cell Dev Biol Plant 42:309–317

    Article  CAS  Google Scholar 

  • WHO (2001) Antimalarial drug combination therapy: report of a WHO technical consultation. WHO/CDS/RBM/2001/35, reiterated in 2003

  • Woerdenbag HJ, Lugt CB, Pras N (1990) Artemisia annua L.: a source of novel antimalarial drugs. Pharmaceutisch Weekblad, Sci Ed 12:169–181

    Article  CAS  Google Scholar 

  • Woerdenbag HJ, Bos R, Salomons MC (1993) Volatile constituents of Artemisia annua L. Flavour Fragrance J 8:131–137

    Article  CAS  Google Scholar 

  • Wu SQ, Schalk M, Clark A, Miles RB, Coates R, Chapel J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447

    Article  PubMed  CAS  Google Scholar 

  • Yin LL, Zhao C, Huang Y, Yang RY, Zeng QP (2008) Abiotic stress-induced expression of artemisinin biosynthesis genes in Artemisia annua L. Chin J Appl Environ Biol (in press)

  • Yuan LZ, Rouviere PE, Larossa RA, Suh W (2006) Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoids production in E.coli. Metab Eng 8:79–90

    Article  PubMed  CAS  Google Scholar 

  • Zeng QP, Zhao C, Yin LL, Yang RY, Zeng XM, Huang Y, Feng LL, Yang XQ (2008) Cloning and quantitative analysis of chilling stress-induced ESTs in Artemisia annua. Sci China Ser C (in press)

Download references

Acknowledgments

This article was financially supported by the National Science. Foundation of China (NSFC) under the project numbers of 30672614 and 30271591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingping Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Q., Qiu, F. & Yuan, L. Production of artemisinin by genetically-modified microbes. Biotechnol Lett 30, 581–592 (2008). https://doi.org/10.1007/s10529-007-9596-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9596-y

Keywords

Navigation