Skip to main content
Log in

Expression of l-phosphinothricin synthesis enzymes in Pichia pastoris for synthesis of l-phosphinothricin

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

With the ban of highly toxic herbicides, such as paraquat and glyphosate, phosphinothricin (PPT) is becoming the most popular broad-spectrum and highly effective herbicide. The current PPT products in the market are usually a racemic mixture with two configurations, the D-type and L-type, of which only the L-PPT has the herbicidal activity. The racemic product is not atom economic, more toxic and may cause soil damage. Asymmetric synthesis of L-PPT has become a research focus in recent years, while biological synthesis methods are preferred for its character of environmental friendly and requiring less reaction steps when being compared to the chemical methods. We have developed a biological synthesis route to produce optically pure L-PPT from D,L-PPT in two steps using 2-carbonyl-4- (hydroxymethyl phosphonyl) butyric acid as the intermediate. In this study, we expressed the glutamate dehydrogenase and glucose dehydrogenase using Pichia pastoris as the first time. After a series of optimization, the total L-PPT yield reached 84%. The developed synthesis system showed a high potential for future industrial application. Compare to the previous plasmid-carrying-E. coli expression system, the established method may avoid antibiotic usage and provided an alternative way for industrial synthesis of optically pure L-PPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad S, Nahalka J, Winkler M et al (2011) High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris. Biotech Lett 33(3):557–563

    Article  CAS  Google Scholar 

  • Abdelmoula SS, Rekik L, Gargouri A et al (2007) High-level expression of human tumour suppressor P53 in the methylotrophic yeast: Pichia pastoris. Protein Expr Purif 54(2):283–288

    Article  Google Scholar 

  • Boettner M, Prinz B, Holz C et al (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99(1):51–62

    Article  CAS  Google Scholar 

  • Brunhuber NM, Blanchard JS (1994) The biochemistry and enzymology of amino acid dehydrogenases. Crit Rev Biochem Mol Biol 29(6):415–467

  • Cao CH, Cheng F, Xue YP et al (2020) Efficient synthesis of L-phosphinothricin using a novel aminoacylase mined from Stenotrophomonas maltophilia. Enzyme Microb Technol 135:109493

    Article  CAS  Google Scholar 

  • Chen RR (2007) Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 74(4):730–738

    Article  CAS  Google Scholar 

  • Cheng F, Li H, Zhang K et al (2020a) Tuning amino acid dehydrogenases with featured sequences for l-phosphinothricin synthesis by reductive amination. J Biotechnol 312:35–43

    Article  CAS  Google Scholar 

  • Cheng F, Li QH, Zhang HY et al (2020) Simultaneous directed evolution of coupled enzymes for efficient asymmetric synthesis of l-phosphinothricin. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.02563-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Cos O, Ramón R, Montesinos JL et al (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5(1):17

    Article  Google Scholar 

  • Damasceno LM, Pla I, Chang HJ et al (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37(1):18–26

    Article  CAS  Google Scholar 

  • Gough S, Deshpande M, Scher M et al (2001) Permeabilization of Pichia pastoris for glycolate oxidase activity. Biotech Lett 23(18):1535–1537

    Article  CAS  Google Scholar 

  • Guarna MM, Lesnicki GJ, Tam BM et al (1997) On-line monitoring and control of methanol concentration in shake-flask cultures of Pichia pastoris. Biotechnol Bioeng 56(3):279–286

    Article  CAS  Google Scholar 

  • Hohenblum H, Gasser B, Maurer M et al (2004) Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng 85(4):367–375

    Article  CAS  Google Scholar 

  • Idiris A, Tohda H, Kumagai H et al (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417

    Article  CAS  Google Scholar 

  • Jia DX, Liu ZJ, Xu HP et al (2019) Asymmetric synthesis of l-phosphinothricin using thermostable alpha-transaminase mined from Citrobacter koseri. J Biotechnol 302:10–17

    Article  CAS  Google Scholar 

  • Jin LQ, Peng F, Liu HL et al (2019) Asymmetric biosynthesis of l-phosphinothricin by a novel transaminase from Pseudomonas fluorescens ZJB09-108. Process Biochem 85:60–67

    Article  CAS  Google Scholar 

  • Karbalaei M, Rezaee S, Farsiani H (2020) Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol 235:5867–5881

    Article  CAS  Google Scholar 

  • Katakura Y, Zhang W, Zhuang G et al (1998) Effect of methanol concentration on the production of human β2-glycoprotein I domain V by a recombinant Pichia pastoris: a simple system for the control of methanol concentration using a semiconductor gas sensor. J Ferment Bioeng 86(5):482–487

    Article  CAS  Google Scholar 

  • Kobayashi K, Kuwae S, Ohya T et al (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89(1):55–61

    Article  CAS  Google Scholar 

  • Koganesawa N, Aizawa T, Shimojo H et al (2002) Expression and purification of a small cytokine growth-blocking peptide from armyworm pseudaletia separata by an optimized fermentation method using the methylotrophic yeast Pichia pastoris. Protein Expr Purif 25(3):416–425

    Article  CAS  Google Scholar 

  • Li XL, Huang J (2009) Strong favorable tool for foreign protein expression—Pichia pastoris progress in modern. Biomedicine 9(1):171–174

    CAS  Google Scholar 

  • Liu ZQ, Ye JJ, Shen ZY et al (2015) Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Appl Microbiol Biotechnol 99(5):2119–2129

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, Mcneil B et al (2010) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    Article  Google Scholar 

  • Murasugi A, Tohma-Aiba Y, Asami Y (2000) Production of recombinant human midkine in yeast Pichia pastoris. J Biosci Bioeng 90(4):395–399

    Article  CAS  Google Scholar 

  • Siegel RS, Brierley RA (1989) Methylotrophic yeast Pichia pastoris produced in high-cell-density fermentations with high cell yields as vehicle for recombinant protein production. Biotechnol Bioeng 34(3):403–404

    Article  CAS  Google Scholar 

  • Taylor KB (2002) Enzyme kinetics and mechanisms. Academic Press, Berlin

  • Tu Y, Wang Y, Wang G et al (2012) High-level expression and immunogenicity of a porcine circovirus type 2 capsid protein through codon optimization in Pichia pastoris. Appl Microbiol Biotechnol 97(7):2867–2875

    Article  Google Scholar 

  • Xie HS, Zheng QQ, Si CC (2019) Advances in the production of insulin analogues by Pichia Pastoris fermentation. Strait Pharm J 31(12):3–6

    Google Scholar 

  • Xue YP, Cao CH, Zheng YG (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47(4):1516–1561

    Article  CAS  Google Scholar 

  • Yin XJ, Liu YY, Meng LJ et al (2018a) Rational molecular engineering of glutamate dehydrogenases for enhancing asymmetric reductive amination of bulky α-keto acids. Adv Synth Catal 361(4):803–812

    Article  Google Scholar 

  • Yin X, Wu J, Yang L (2018b) Efficient reductive amination process for enantioselective synthesis of l-phosphinothricin applying engineered glutamate dehydrogenase. Appl Microbiol Biotechnol 102(10):4425–4433

    Article  CAS  Google Scholar 

  • Zhu T, Guo M, Tang Z et al (2009) Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris. J Appl Microbiol 107(3):954–963

    Article  CAS  Google Scholar 

  • Zhu W, Hu YJ, Xie LP (2018) Related strategies and research progress of efficient expression of heterologous proteins in Pichia pastoris. Chin J Pharm 49(4):417–425

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21978268).

Author information

Authors and Affiliations

Authors

Contributions

Y-KC created the idea and wrote the first draft. QW and HG implemented the laboratory work. QW also helped in manuscript revision. Y-PX and Y-GZ provided financial support and finalized the draft.

Corresponding author

Correspondence to Ya-Ping Xue.

Ethics declarations

Conflict of interest

We, the authors, declare that we have no conflict of interest in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cen, YK., Wang, Q., Gong, H. et al. Expression of l-phosphinothricin synthesis enzymes in Pichia pastoris for synthesis of l-phosphinothricin. Biotechnol Lett 44, 561–570 (2022). https://doi.org/10.1007/s10529-022-03239-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-022-03239-w

Keywords

Navigation