Skip to main content

Advertisement

Log in

Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella marina) in Australia

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In an invasive species, selection for increased rates of dispersal at the expanding range front may favor the evolution of reduced investment into any trait that does not contribute to more rapid dispersal. Thus, populations at the invasion front may exhibit reduced investment into the immune system. To test this prediction, cane toads (Rhinella marina) from parents collected from populations across the toads’ invasion history in tropical Australia were raised in a standard environment. When their immune systems were challenged by injection of bacterial lipopolysaccharide, the toads’ metabolic rates rose by up to 40%. The magnitude of elevation in metabolic rate was lower in toads derived from the invasion front than in those from long-established populations. Our results support the hypothesis that an animal’s investment in immune defenses can be modified by selective forces that arise in the course of a biological invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams MV (1993) The trade-off between foraging and courting in male guppies. Anim Behav 45:673–681

    Article  Google Scholar 

  • Alford RA, Brown GP, Schwarzkopf L, Phillips B, Shine R (2008) Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildl Res 36:23–28

    Article  Google Scholar 

  • Andrews RM, Pough FH (1985) Metabolism of squamate reptiles: allometric and ecological relationships. Physiol Zool 58:214–231

    Google Scholar 

  • Apanius V (1998) Stress and immune defense. Adv Study Behav 27:133–153

    Article  Google Scholar 

  • Apanius V, Deerenberg C, Visser H, Daan S (1994) Reproductive effort and parasite resistance: evidence for an energetically based trade-off. J Ornithol 135:404

    Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    Article  PubMed  Google Scholar 

  • Brown GP, Shilton C, Phillips BL, Shine R (2007) Invasion, stress, and spinal arthritis in cane toads. Proc Natl Acad Sci USA 104:17698–17700

    Article  PubMed  CAS  Google Scholar 

  • Bureau of Meteorology (2009) Climate statistics for Australian locations. Commonwealth of Australia. http://www.bom.gov.au/climate/averages/. Accessed 21 Sept 2009

  • Cabanac AJ, Cabanac M (2004) No emotional fever in toads. J Therm Biol 29:669–673

    Article  Google Scholar 

  • Craddock C (1978) Corticosteroid-induced lymphopenia, immunosuppression, and body defense. Ann Intern Med 88:564

    PubMed  CAS  Google Scholar 

  • Cunningham A, Daszak P, Rodriguez J (2003) Pathogen pollution: defining a parasitological threat to biodiversity conservation. J Parasitol 89:S78–S83

    Google Scholar 

  • Dascombe MJ, Rothwell NJ, Sagay BO, Stock MJ (1989) Pyrogenic and thermogenic effects of interleukin 1β in the rat. Am J Physiol 256:E7–E11

    PubMed  CAS  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287:443–449

    Article  PubMed  CAS  Google Scholar 

  • Demas GE, Chefer V, Talan MI, Nelson RJ (1997) Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6 J mice. Am J Physiol 273:R1631–R1637

    PubMed  CAS  Google Scholar 

  • Diamond J (1997) Guns, germs, and steel: the fates of human societies. WW Norton & Company, New York

    Google Scholar 

  • Diener E, Marchalonis J (1970) Cellular and humoral aspects of the primary immune response of the toad Bufo marinus. Immunology 18:279–293

    PubMed  CAS  Google Scholar 

  • Diener E, Nossal GJV (1966) Phylogenetic studies on the immune response I. Localization of antigens and immune response in the toad, Bufo marinus. Immunology 10:535–542

    PubMed  CAS  Google Scholar 

  • Du Pasquier L (1992) Origin and evolution of the vertebrate immune system. Acta Pathol Microbiol Immunol Scandinavica 100:383–392

    Article  CAS  Google Scholar 

  • Du Pasquier L, Litman GW (2000) Origin and evolution of the vertebrate immune system. Springer, Berlin

    Book  Google Scholar 

  • Evans MR, Goldsmith AR, Norris SRA (2000) The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behav Ecol Sociobiol 47:156–163

    Article  Google Scholar 

  • Gervasi SS, Foufopoulos J (2008) Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct Ecol 22:100–108

    Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev Camb Phil Soc 80:611–662

    Article  Google Scholar 

  • Glick B, Day E, Thompson D (1981) Calorie-protein deficiencies and the immune response of the chicken I. Humoral immunity. Poultry Sci 60:2494–2500

    CAS  Google Scholar 

  • Glick B, Taylor R Jr, Martin D, Watabe M, Day E, Thompson D (1983) Calorie-protein deficiencies and the immune response of the chicken. II. Cell-mediated immunity. Poultry Sci 62:1889–1893

    CAS  Google Scholar 

  • Goldberg HS, Luckey TD (1959) Introduction. In: Goldberg HS (ed) Antibiotics: their chemistry and non-medical uses. D. Van Nostrand Company, Princeton, pp 1–57

    Google Scholar 

  • Grindstaff JL, Brodie ED III, Ketterson ED (2003) Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proc R Soc B 270:2309–2319

    Article  PubMed  Google Scholar 

  • Gross WG, Siegel PB, Hall RW, Domermuth CH, DuBoise RT (1980) Production and persistence of antibodies in chickens to sheep erythrocytes. 2. Resistance to infectious diseases. Poultry Sci 59:205–210

    CAS  Google Scholar 

  • Gulig PA (1996) Pathogenesis of systemic disease. In: Neidhardt FC, Curtis R III, Ingraham JL, Lin CC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, pp 2774–2787

    Google Scholar 

  • Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2004) Costs of immunity: immune responsiveness reduces survival in a vertebrate. Proc R Soc B 271:925–930

    Article  PubMed  Google Scholar 

  • Hart BL (1988) Biological basis of the behavior of sick animals. Neurosc Biobehav Rev 12:123–138

    Article  CAS  Google Scholar 

  • Hasday JD, Fairchild KD, Shanholtz C (2000) The role of fever in the infected host. Microbes Infect 2:1891–1904

    Article  PubMed  CAS  Google Scholar 

  • Heino M, Kaitala V (1999) Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J Evol Biol 12:423–429

    Article  Google Scholar 

  • Inui A (2001) Cytokines and sickness behavior: implications from knockout animal models. Trends Immunol 22:469–473

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ (2005) Immunobiology: the immune system in health and disease. Garland Science, New York

    Google Scholar 

  • Kaltz O, Shykoff J (1998) Local adaptation in host-parasite systems. Heredity 81:361–370

    Article  Google Scholar 

  • Klasing KC (2004) The costs of immunity. Acta Zool Sinica 50:961–969

    CAS  Google Scholar 

  • Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, New York

    Google Scholar 

  • Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71:93–128

    PubMed  CAS  Google Scholar 

  • Knox B, Ladiges P, Evans B (1994) Biology. McGraw-Hill, Sydney

    Google Scholar 

  • Kraaijeveld AR, Limentani EC, Godfray HCJ (2001) Basis of the trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Proc R Soc B 268:259–261

    Article  PubMed  CAS  Google Scholar 

  • Lamb JR, Bal V, Rothbard JB, Mehlert A, Mendez-Samperio P, Young DB (1989) The mycobacterial GroEL stress protein: a common target of T-cell recognition in infection and autoimmunity. J Autoimmun 2:93–100

    Article  PubMed  Google Scholar 

  • Lee KA, Klasing KC (2004) A role for immunology in invasion biology. Trends Ecol Evol 19:523–529

    Article  PubMed  Google Scholar 

  • Llewelyn J, Phillips BL, Alford RA, Schwarzkopf L, Shine R (2010) Locomotor performance in an invasive species: cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia 162:343–348

    Article  PubMed  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Lochmiller R, Vestey M, Boren J (1993) Relationship between protein nutritional status and immunocompetence in northern bobwhite chicks. Auk 110:503–510

    Google Scholar 

  • Locke M, Noble E (1995) Stress proteins: the exercise response. Appl Physiol Nutr Metab 20:155–167

    CAS  Google Scholar 

  • Long K, Nanthakumar N (2004) Energetic and nutritional regulation of the adaptive immune response and trade-offs in ecological immunology. Am J Human Biol 16:499–507

    Article  Google Scholar 

  • Luckey TD (1959) Antibiotics in nutrition. In: Goldberg HS (ed) Antibiotics: their chemistry and non-medical uses. D. Van Nostrand Company, Princeton, pp 174–321

    Google Scholar 

  • Madsen T, Ujvari B, Olsson M (2005) Old pythons stay fit: effects of haematozoan infections on life history traits of a large tropical predator. Oecologia 142:407–412

    Article  PubMed  Google Scholar 

  • Mann J (1999) The elusive magic bullet: the search for the perfect drug. Oxford University Press, New York

    Google Scholar 

  • Mansfield JM, Olivier M (2002) Immune evasion by parasites. In: Kaufmann S, Sher A, Ahmed R (eds) Immunology of infectious diseases. American Society for Microbiology, Washington, pp 379–392

    Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2007) Immune defense and reproductive pace of life in Peromyscus mice. Ecology 88:2516–2528

    Article  PubMed  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Phil Trans R Soc B 363:321–339

    Article  PubMed  Google Scholar 

  • McCallum ML, Trauth SE (2007) Physiological trade-offs between immunity and reproduction in the northern cricket frog (Acris crepitans). Herpetologica 63:269–274

    Article  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300

    Article  PubMed  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    Article  PubMed  CAS  Google Scholar 

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc B 267:2507–2510

    Article  PubMed  CAS  Google Scholar 

  • Norris K, Evans M (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • Owen J, Moore F (2006) Seasonal differences in immunological condition of three species of thrushes. The Condor 108:389–398

    Article  Google Scholar 

  • Owen-Ashley N, Hasselquist D, Wingfield J (2004) Androgens and the immunocompetence handicap hypothesis: unraveling direct and indirect pathways of immunosuppression in song sparrows. Am Nat 164:490–505

    Article  PubMed  Google Scholar 

  • Packard GC, Boardman TJ (1988) The misuse of ratios, indices, and percentages in ecophysiological research. Physiol Zool 61:1–9

    Google Scholar 

  • Phillips B, Brown G, Webb J, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803

    Article  PubMed  CAS  Google Scholar 

  • Phillips BL, Brown GP, Greenlees M, Webb JK, Shine R (2007) Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Aust Ecol 32:169–176

    Article  Google Scholar 

  • Phillips BL, Brown GP, Travis JMJ, Shine R (2008) Reid’s paradox revisited: the evolution of dispersal kernels during range expansion. Am Nat 172:S34–S48

    Article  PubMed  Google Scholar 

  • Phillips BL, Kelehear C, Pizzatto L, Brown GP, Barton D, Shine R (2010) Parasites and pathogens lag behind their host during periods of host range-advance. Ecology 91:872–881

    Article  PubMed  Google Scholar 

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc B 265:1637–1641

    Article  PubMed  Google Scholar 

  • Ricklefs R, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Rollins-Smith LA (1998) Metamorphosis and the amphibian immune system. Immunol Rev 166:221–230

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ (1989) CRF is involved in the pyrogenic and thermogenic effects of interleukin 1β in the rat. Am J Physiol 256:E111–E115

    PubMed  CAS  Google Scholar 

  • Secor SM, Faulkner AC (2002) Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus. Physiol Biochem Zool 75:557–571

    Article  PubMed  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Sherman E, Stephens A (1998) Fever and metabolic rate in the toad Bufo marinus. J Therm Biol 23:49–52

    Article  Google Scholar 

  • Shilton C, Brown G, Benedict S, Shine R (2008) Spinal arthropathy associated with Ochrobactrum anthropi in free-ranging cane toads (Chaunus [Bufo] marinus) in Australia. Vet Pathol 45:85–94

    Article  PubMed  CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Svensson EI, Råberg L, Koch C, Hasselquist D (1998) Energetic stress, immunosuppression and the costs of an antibody response. Funct Ecol 12:912–919

    Article  Google Scholar 

  • Taylor R, Lewis M, Powles J (1998) The Australian mortality decline: cause-specific mortality 1907–1990. Aust NZ J Publ Health 22:37–44

    Article  CAS  Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  PubMed  CAS  Google Scholar 

  • Van Rooij JM, Bruggemann JH, Videler JJ, Breeman AM (1995) Plastic growth of the herbivorous reef fish Sparisoma viride: field evidence for a trade-off between growth and reproduction. Mar Ecol Prog Ser 122:93–105

    Article  Google Scholar 

  • Vidaver AK (2002) Uses of antimicrobials in plant agriculture. Clin Infect Dis 34:S107–S110

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Burggren W, Nobrega E (1995) Metabolic, ventilatory, and acid-base responses associated with specific dynamic action in the toad Bufo marinus. Physiol Zool 68:192–205

    CAS  Google Scholar 

  • Withers PC (1977) Measurement of VO2, and VCO2, and evaporative water loss with a flow-through mask. J Appl Physiol 42:120–123

    PubMed  CAS  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Fort Worth

    Google Scholar 

  • Wobeser G (2006) Essentials of disease in wild animals. Blackwell Publishing, Ames

    Google Scholar 

  • Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160:S9–S22

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to J. Herbert, S. Parker and M. Elphick who provided ongoing laboratory assistance. This work was funded by the Australian Research Council. All procedures were approved by the University of Sydney Animal Ethics Committee (Protocol #L04/5-2009/1/5044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Shine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llewellyn, D., Thompson, M.B., Brown, G.P. et al. Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella marina) in Australia. Biol Invasions 14, 999–1008 (2012). https://doi.org/10.1007/s10530-011-0135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-0135-3

Keywords

Navigation