Skip to main content

Advertisement

Log in

Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The early detection of newly naturalised alien species is vital to ensuring the greatest chance of their successful eradication. Understanding where species naturalise most frequently is the first stage in allocating surveillance effort. Using Australia’s Virtual Herbarium, we compiled the collection records for all plant species in Australia. We controlled for potential spatial biases in collection effort to identify areas that have an elevated rate of first records of alien species’ occurrence in Australia. Collection effort was highly variable across Australia, but the most intense collection effort occurred either close to herbaria (located in cities) or in remote natural environments. Significant clusters of first records of occurrence were identified around each state’s capital city, coinciding with higher collection effort. Using Poisson point process modelling, we were able to determine the relative influence of environmental and anthropogenic factors on the spatial variation in the risk of species naturalisation. Effort-corrected naturalisation risk appeared to be strongly related to land use, road and human population densities, as well as environmental factors such as average temperature and rainfall. Our paper illustrates how the risk of naturalisation at a location can be estimated quantitatively. Improved understanding of factors that contribute to naturalisation risk enhances allocation of surveillance effort, thereby detecting novel species sooner, and increasing the likelihood of their eventual eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABARES (2010) Guidelines for land use mapping in Australia: principles, procedures and definitions, 7th edn. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  • ABARES (2014) Catchment scale land use of Australia. Australian Bureau of Agricultural and Resource Economics and Sciences. http://www.agriculture.gov.au/ABARES/aclump/pages/land-use/data-download.aspx. Accessed 09/02/2015

  • ABS (2012) Census of population and housing: mesh block counts, 2011. Australian Government Bureau of Statistics. http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/2074.02011. Accessed 16/2/2015

  • Aikio S, Duncan RP, Hulme PE (2010) Herbarium records identify the role of long-distance spread in the spatial distribution of alien plants in New Zealand. J Biogeogr 37:1740–1751

    Article  Google Scholar 

  • Andersen MC, Adams H, Hope B, Powell M (2004a) Risk analysis for invasive species: general framework and research needs. Risk Anal 24:893–900

    Article  PubMed  Google Scholar 

  • Andersen MC, Adams H, Hope B, Powell M (2004b) Risk assessment for invasive species. Risk Anal 24:787–793

    Article  PubMed  Google Scholar 

  • Australia Geoscience (2004) Global Map Australia 1 M 2001, 3rd edn. Commonwealth of Australia, Canberra

    Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Article  Google Scholar 

  • Baddeley A, Turner R (2006) Modelling spatial point patterns in R. In: Baddeley A, Gregori P, Mateu Mahiques J, Stoica R, Stoyan D (eds) Case studies in spatial point process modeling. Lecture notes in statistics. Springer, New York, pp 23–74

  • Baddeley AJ, Møller J, Waagepetersen R (2000) Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54:329–350

    Article  Google Scholar 

  • Baddeley A, Turner R, Møller J, Hazelton M (2005) Residual analysis for spatial point processes (with discussion). J R Stat Soc Series B Stat Methodol 67:617–666

    Article  Google Scholar 

  • Baxter PW, Possingham HP (2011) Optimizing search strategies for invasive pests: learn before you leap. J Appl Ecol 48:86–95

    Article  Google Scholar 

  • Berman M, Diggle P (1989) Estimating weighted integrals of the second-order intensity of a spatial point process. J R Stat Soc Series B Stat Methodol 51:81–92

    Google Scholar 

  • Bivand RS, Lewin-Koh N (2013) maptools: tools for reading and handling spatial objects. R package version 0.8-23. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=maptools

  • Bivand RS, Rundel C (2013) rgeos: interface to geometry engine—open source (GEOS). R package version 0.2-19. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=rgeos

  • Bivand RS, Pebesma EJ, Gómez-Rubio V, Pebesma EJ (2008) Applied spatial data analysis with R. Use R!. Springer, New York

    Google Scholar 

  • Bivand RS, Keitt T, Rowlingson B (2013) rgdal: bindings for the Geospatial Data Abstraction Library. R package version 0.8-9. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=rgdal

  • Blackburn TM et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Bogich TL, Liebhold AM, Shea K (2008) To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J Appl Ecol 45:1134–1142

    Article  Google Scholar 

  • BoM (2015) Climate and oceans data and analysis. Australian Government Bureau of Meteorology. http://www.bom.gov.au/climate/data-services/. Accessed 16/02/2015

  • Brown PE (2015) Model-based geostatistics the easy way. J Stat Softw 63:1–24

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cacho OJ, Hester SM (2011) Deriving efficient frontiers for effort allocation in the management of invasive species. Aust J Agric Resour Econ 55:72–89

    Article  Google Scholar 

  • Caley P, Groves RH, Barker R (2008) Estimating the invasion success of introduced plants. Divers Distrib 14:196–203

    Article  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40

    Article  Google Scholar 

  • Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib 17:1099–1110

    Article  Google Scholar 

  • CHAH (2014a) Australia’s Virtual Herbarium. Council of Heads of Australasian Herbaria. http://avh.ala.org.au/. Accessed 19/08/2014

  • CHAH (2014b) Australian Plant Census. Council of Heads of Australasian Herbaria. http://www.chah.gov.au/apc/index.html. Accessed 04/09/2014

  • Dalmazzone S (2000) Economic factors affecting vulnerability to biological invasions. In: Perrings C, Willamson M, Dalmazzone S (eds) The economics of biological invasions. Edward Elgar Publishing Limited, Cheltenham, pp 17–30

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Diggle PJ (1985) A kernel method for smoothing point process data. J R Stat Soc Ser C Appl Stat 34:138–147

    Google Scholar 

  • Dodd AJ, Ainsworth N, Burgman MA, McCarthy MA (2015a) Plant extirpation at the site scale: implications for eradication programmes. Divers Distrib 21:151–162. doi:10.1111/ddi.12262

    Article  Google Scholar 

  • Dodd AJ, Burgman MA, McCarthy MA, Ainsworth N (2015b) The changing patterns of plant naturalisation in Australia. Divers Distrib 21:1038–1050. doi:10.1111/ddi.12351

    Article  Google Scholar 

  • Dowle M, Short T, Lianoglou S, Srinivasan A (2014) data. table: extension of data.frame. R package version 1.9.2. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=data.table

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen and Co Ltd, London

    Book  Google Scholar 

  • Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM (2012) Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol Lett 15:803–812

    Article  PubMed  Google Scholar 

  • Essl F et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108:203–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finnoff D, Shogren JF, Leung B, Lodge D (2007) Take a risk: preferring prevention over control of biological invaders. Ecol Econ 62:216–222

    Article  Google Scholar 

  • Fridley JD et al (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    Article  CAS  PubMed  Google Scholar 

  • Genovesi P (2005) Eradications of invasive alien species in Europe: a review. Biol Invasions 7:127–133

    Article  Google Scholar 

  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK (2008) Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers Distrib 14:234–242

    Article  Google Scholar 

  • Harris S, Brown J, Timmins S (2001) Weed surveillance—How often to search? Science for Conservation. Department of Conservation, Wellington

    Google Scholar 

  • Hauser CE, McCarthy MA (2009) Streamlining ‘search and destroy’: cost-effective surveillance for invasive species management. Ecol Lett 12:683–692

    Article  PubMed  Google Scholar 

  • Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi:10.1007/s10530-007-9146-5

    Article  Google Scholar 

  • Hester SM, Cacho OJ, Panetta FD, Hauser CE (2013) Economic aspects of post-border weed risk management. Divers Distrib 19:580–589

    Article  Google Scholar 

  • Hijmans RJ, van Etten J (2013) raster: geographic data analysis and modeling. R package version 2.1-37. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=raster

  • Huang D, Zhang R, Kim KC, Suarez AV (2012) Spatial pattern and determinants of the first detection locations of invasive alien species in mainland China. PLoS One 7:e31734. doi:10.1371/journal.pone.0031734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18. doi:10.1111/j.1365-2664.2008.01600.x

    Article  Google Scholar 

  • Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49:10–19. doi:10.1111/j.1365-2664.2011.02069.x

    Article  Google Scholar 

  • Hyndman R, Mesgaran M, Cousens R (2015) Statistical issues with using herbarium data for the estimation of invasion lag-phases. Biological Invasions 17:3371–3381

    Article  Google Scholar 

  • Kaplan H, van Niekerk A, Le Roux JJ, Richardson DM, Wilson JR (2014) Incorporating risk mapping at multiple spatial scales into eradication management plans. Biol Invasions 16:691–703

    Article  Google Scholar 

  • Kelsall JE, Diggle PJ (1995) Non-parametric estimation of spatial variation in relative risk. Stat Med 14:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Kim CS, Lubowski RN, Lewandrowski J, Eiswerth ME (2006) Prevention or control: optimal government policies for invasive species management. Agric Resour Econ Rev 35:29–40

    Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496

    Article  Google Scholar 

  • Lambdon PW et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Lavoie C (2013) Biological collections in an ever changing world: herbaria as tools for biogeographical and environmental studies. Perspect Plant Ecol Evol Syst 15:68–76

    Article  Google Scholar 

  • Lavoie C, Saint-Louis A, Guay G, Groeneveld E, Villeneuve P (2012) Naturalization of exotic plant species in north-eastern North America: trends and detection capacity. Divers Distrib 18:180–190

    Article  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26

    Article  Google Scholar 

  • Lin W, Cheng X, Xu R (2007) Fast economic development accelerates biological invasions in China. PLoS One 11:e1208

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Maroyi A (2012) The casual, naturalised and invasive alien flora of Zimbabwe based on herbarium and literature records. Koedoe 54:30–36. doi:10.4102/koedoe.v54i1.1054

    Article  Google Scholar 

  • Moerman DE, Estabrook GF (2006) The botanist effect: counties with maximal species richness tend to be home to universities and botanists. J Biogeogr 33:1969–1974

    Article  Google Scholar 

  • Moodley D, Geerts S, Rebelo T, Richardson DM, Wilson JR (2014) Site-specific conditions influence plant naturalization: the case of alien Proteaceae in South Africa. Acta Oecol 59:62–71

    Article  Google Scholar 

  • Moore JL, Rout TM, Hauser CE, Moro D, Jones M, Wilcox C, Possingham HP (2010) Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biol Conserv 143:1068–1078

    Article  Google Scholar 

  • Moore AL, McCarthy MA, Parris KM, Moore JL (2014) The optimal number of surveys when detectability varies. PLoS One 9:e115345. doi:10.1371/journal.pone.0115345

    Article  PubMed Central  PubMed  Google Scholar 

  • Myers JH, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320

    Article  PubMed  Google Scholar 

  • Natural Earth (2014) 1:10 m Cultural Vectors—Ports. Natural Earth Data. http://www.naturalearthdata.com/downloads/10m-cultural-vectors/

  • Newsom LD (1978) Eradication of plant pests—con. Bull Entomol Soc Am 24:35–40

    Google Scholar 

  • Panetta FD (2009) Weed eradication - an economic perspective. Invasive Plant Sci Manag 2:360–368

    Article  Google Scholar 

  • Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5:9–13

    Google Scholar 

  • Pfeiffer JM (2008) Biological invasions and biocultural diversity: linking ecological and cultural systems. Environ Conserv 35:281–293

    Article  Google Scholar 

  • Pheloung P, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251

    Article  Google Scholar 

  • Phillips ML, Murray BR, Leishman MR, Ingram R (2010) The naturalization to invasion transition: are there introduction-history correlates of invasiveness in exotic plants of Australia? Austral Ecol 35:695–703

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pluess T, Cannon R, Jarosik V, Pergl J, Pysek P, Bacher S (2012) When are eradication campaigns successful? A test of common assumptions. Biol Invasions 14:1365–1378

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050

    Article  Google Scholar 

  • Pyšek P, Sadlo J, Mandak B, Jarosik V (2003) Czech alien flora and the historical pattern of its formation: what came first to Central Europe? Oecologia 135:122–130. doi:10.1007/s00442-002-1170-7

    Article  PubMed  Google Scholar 

  • Pyšek P, Richardson DM, Rejmanek M, Webster GL, Williamson M, Kirschner J (2004) Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53:131–143. doi:10.2307/4135498

    Article  Google Scholar 

  • Pyšek P et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci 107:12157–12162

    Article  PubMed Central  PubMed  Google Scholar 

  • Pyšek P et al (2013) Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB Plants 5:plt042. doi:10.1093/aobpla/plt042

    Article  PubMed Central  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing vol 3.0. R Foundation for Statistical Computing, Vienna

  • Rejmanek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN SSC Invasive Species Specialist Group, Gland, pp 249–253

    Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Renner IW et al (2015) Point process models for presence-only analysis. Methods Ecol Evol 6:366–379. doi:10.1111/2041-210x.12352

    Article  Google Scholar 

  • Revolution Analytics, Weston S (2014) doParallel: foreach parallel adaptor for the parallel package. R package version 1.0.8. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=doParallel

  • Rich TCG (2006) Floristic changes in vascular plants in the British Isles: geographical and temporal variation in botanical activity 1836–1988. Bot J Linn Soc 152:303–330

    Article  Google Scholar 

  • Rojas-Sandoval J, Acevedo-Rodríguez P (2015) Naturalization and invasion of alien plants in Puerto Rico and the Virgin Islands. Biol Invasions 17:149–163

    Article  Google Scholar 

  • Sakai AK et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Schmidt D, Spring D, Mac Nally R, Thomson JR, Brook BW, Cacho O, McKenzie M (2010) Finding needles (or ants) in haystacks: predicting locations of invasive organisms to inform eradication and containment. Ecol Appl 20:1217–1227

    Article  PubMed  Google Scholar 

  • Simberloff D (2003) How much information on population biology is needed to manage introduced species? Conserv Biol 17:83–92

    Article  Google Scholar 

  • Stajsic V, Vaughan AC (2007) The role of the National Herbarium of Victoria (MEL) in the documentation of new weeds. In: Young K, Raymond K (eds) Weed Society of Victoria Third Biennial Conference ‘Earth Wind Fire Water and Weeds’, Bendigo, 2007. The Weed Society of Victoria, Frankston, pp 70–74

  • Sullivan JJ, Williams PA, Cameron EK, Timmins SM (2004) People and time explain the distribution of naturalized plants in new zealand. Weed Technol 18:1330–1333

    Article  Google Scholar 

  • Tilman D (1997) Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:81–92

    Article  Google Scholar 

  • Tingley R, Weeks AR, Smart AS, van Rooyen AR, Woolnough AP, McCarthy MA (2014) European newts establish in Australia, marking the arrival of a new amphibian order. Biol Invasions 17:31–37. doi:10.1007/s10530-014-0716-z

    Article  Google Scholar 

  • van Kleunen M et al. (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103

  • Vila M, Pujadas J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401

    Article  Google Scholar 

  • Vilà M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708. doi:10.1111/j.1461-0248.2011.01628.x

    Article  PubMed  Google Scholar 

  • Virtue JG, Bennett SJ, Randall RP (2004) Plant introductions in Australia: how can we resolve ‘weedy’conflicts of interest. In: Sindel BM, Johnson SB (eds) Proceedings of the 14th Australian Weeds Conference, Wagga Wagga, 2004. Weed Society of New South Wales, Sydney, pp 42–48

  • Weber J, Panetta FD, Virtue J, Pheloung P (2009) An analysis of assessment outcomes from eight years’ operation of the Australian border weed risk assessment system. J Environ Manage 90:798–807

    Article  PubMed  Google Scholar 

  • Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29

    Google Scholar 

  • Wickham H (2012) scales: scale functions for graphics. R package version 0.2.3. The Comprehensive R Archive Network. http://CRAN.R-project.org/package=scales

  • Williamson MH, Fitter A (1996) The characters of successful invaders. Biol Conserv 78:163–170

    Article  Google Scholar 

  • Wittenberg R, Cock M (2001) Invasive alien species: a toolkit of best prevention and management practices. GISP/CAB International, Wallingford

    Book  Google Scholar 

  • Wu SH, Hsieh CF, Chaw SM, Rejmanek M (2004) Plant invasions in Taiwan: insights from the flora of casual and naturalized alien species. Divers Distrib 10:349–362. doi:10.1111/j.1366-9516.2004.00121.x

    Article  Google Scholar 

  • Yang W, Ma K, Kreft H (2014) Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob Ecol Biogeogr 23:1284–1292

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Jane Catford, Jane Elith, Frith Jarrad, Petr Pysek, John Wilson and an additional anonymous reviewer for their insightful comments on earlier versions of this manuscript. Alison Vaughan, Niels Klazenga and Anna Monro helped us understand the nuances of both AVH and APC. Jane Elith provided advice regarding point process models. This research was supported by a Victorian Life Sciences Computation Initiative (VLSCI) Grant [VR0284] on its Peak Computing Facility at the University of Melbourne, an initiative of the Victorian Government, Australia. This research was also supported by an Australian Research Council (ARC) Future Fellowship to M.M. and the ARC Centre of Excellence for Environmental Decisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Dodd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (R 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodd, A.J., McCarthy, M.A., Ainsworth, N. et al. Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions. Biol Invasions 18, 631–645 (2016). https://doi.org/10.1007/s10530-015-1035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1035-8

Keywords

Navigation