Skip to main content

Advertisement

Log in

Ants as indicators for vertebrate fauna at a local scale: an assessment of cross-taxa surrogacy in a disturbed matrix

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We examined the spatial fidelity in the pattern in species richness, abundance and composition of ants, birds, mammals and reptiles in a Eucalyptus vegetation type in Australian tropical savanna woodland. We sampled 32 sites representing intact (uncleared) vegetation, and three treatments of different clearing age (2, 12 and 18 years). We investigated whether each fauna taxon could act a surrogate for pattern in the other, and whether they responded in parallel to time since clearing. Reptiles and mammals were combined into a single group. The correlation between taxa was low for abundance (the best being between rept/mamm and ant abundance R = 0.34) and moderate for species richness (varied from 0.36 to 0.44). Mantel tests identified a moderately strong relationship between bird and rept/mamm composition (R = 0.48). Recent clearing (2–12 years) depleted both abundance and species richness of the vertebrate fauna, whereas ant abundance spiked. Ant species richness was consistent over time since clearing. ANOSIM revealed that clearing age was a strong a priori predictor of birds and rept/mamm composition (Global R = 0.48, 0.65, respectively), whereas it was not for ants (Global R = 0.20). Pair-wise comparisons suggested that for birds, rept/mamm, there was consistent changes in composition from intact woodlands to different aged clearing. This was not the case for ants; most distinct variation in composition occurred between treatments of increasing in clearing age (2–18 years R = 0.69, 12–18 years R = 0.65). The results of this study do not support the use of ants as a surrogate of vertebrates at a local scale in a cleared and intact vegetation mosaic. We acknowledge that identification of universal surrogates and indicators are difficult to find, but funding and political expediency that demand rapid solutions to conservation planning necessitate continued investigation of the merits of using surrogate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen AN (2000) The ants of northern Australia: a guide to the monsoonal fauna. CSIRO Publishing, Collingwood

    Google Scholar 

  • Andersen AN, Patel AD (1994) Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98:15–24. doi:10.1007/BF00326085

    Article  Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way down under: invertebrates as bioindicators in land management. Front Ecol Environ 2:291–298

    Article  Google Scholar 

  • Andersen AN, Hoffmann BD, Muller WJ, Griffiths AD (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. J Appl Ecol 39:8–17. doi:10.1046/j.1365-2664.2002.00704.x

    Article  Google Scholar 

  • Andersen AN, Hoffmann BD, Somes J (2003) Ants as indicators of minesite restoration: community recovery at one of eight rehabilitation sites in central Queensland. Ecol Manage Restor 4:12–19

    Article  Google Scholar 

  • Andersen AN, Fisher A, Hoffmann BD, Read JL, Richards R (2004) Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecol 29:87–92. doi:10.1111/j.1442-9993.2004.01362.x

    Article  Google Scholar 

  • Bestelmeyer BT, Wiens JA (1996) The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecol Appl 6:1225–1240. doi:10.2307/2269603

    Article  Google Scholar 

  • Bibby CJ (1995) Recent past and future extinctions in birds. In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford

    Google Scholar 

  • Bilton DT, McAbendroth L, Bedford A, Ramsay PM (2006) How wide to cast the net? Cross-taxon congruence of species richness, community similarity and indicator taxa in ponds. Freshw Biol 51:578–590. doi:10.1111/j.1365-2427.2006.01505.x

    Article  Google Scholar 

  • Bisevac L, Majer JD (1999) Comparative study of ant communities of rehabilitated. Mineral sand mines and heathland, western Australia. Restor Ecol 7:117–126. doi:10.1046/j.1526-100X.1999.72002.x

    Article  Google Scholar 

  • Blair RB (1999) Birds and butterflies along an urban gradient: surrogate taxa for assessing biodiversity? Ecol Appl 9:164–170. doi:10.1890/1051-0761(1999)009[0164:BABAAU]2.0.CO;2

    Article  Google Scholar 

  • Briese DT, Macauley BJ (1977) Physical structure of an ant community in semi-arid Australia. Aust J Ecol 2:107–120. doi:10.1111/j.1442-9993.1977.tb01131.x

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006a) PRIMER. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Clarke KR, Gorley RN (2006b) PRIMER 6 user manual/tutorial. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Colwell RK (2006) EstimateS 8.0 user’s guide. Department of ecology and evolutionary biology, University of Connecticut, Storrs. http://viceroy.eeb.uconn.edu/estimates

  • Eyre TJ, Kelly AL, Neldner VJ (2006) Bioconservation: a terrestrial vegetation condition assessment tool for biodiversity monitoring in Queensland. Field assessment manual. Environmental Protection Agency, Brisbane

    Google Scholar 

  • Favreau JM, Drew CA, Hess GR, Rubino MJ, Koch FH, Eschelbach KA (2006) Recommendations for assessing the effectiveness of surrogate species approaches. Biodivers Conserv 15:3949–3969. doi:10.1007/s10531-005-2631-1

    Article  Google Scholar 

  • Fisher AM (2001) Avifauna changes along a Eucalyptus regeneration gradient. Emu 101:25–31. doi:10.1071/MU00055

    Article  Google Scholar 

  • Garden JG, McAlpine CA, Possingham H, Jones DN (2007) Habitat structure is more important than vegetation composition for local-level management terrestrial reptile and small mammal species living in urban remnants: a case study from Brisbane, Australia. Austral Ecol 32:669–685. doi:10.1111/j.1442-9993.2007.01750.x

    Article  Google Scholar 

  • Gibb H (2005) The effect of a dominant ant, Iridomyrmex purpureus, on resource use by ant assemblages depends on microhabitat and resource type. Austral Ecol 30:856–867. doi:10.1111/j.1442-9993.2005.01528.x

    Article  Google Scholar 

  • Gibb H, Hochuli DF (2003) Colonisation by a dominant ant facilitated by anthropogenic disturbance: effects on ant assemblage composition, biomass and resource use. Oikos 103:469–478. doi:10.1034/j.1600-0706.2003.12652.x

    Article  Google Scholar 

  • Grenyer R, Orme CDL, Jackson SF, Thomas GH, Davies RG, Davies TJ, Jones KE, Olson VA, Ridgely RS, Rasmussen PC, Ding TS, Bennett PM, Blackburn TM, Gaston KJ, Gittleman JL, Owens IPF (2006) Global distribution and conservation of rare and threatened vertebrates. Nature 444:93–96. doi:10.1038/nature05237

    Article  CAS  PubMed  Google Scholar 

  • Hannah D, Woinarski JCZ, Catterall CP, McCosker JC, Thurgate NY, Fensham RJ (2007) Impacts of clearing, fragmentation and disturbance on the bird fauna of Eucalypt savanna woodlands in central Queensland, Australia. Austral Ecol 32:261–276. doi:10.1111/j.1442-9993.2007.01683.x

    Article  Google Scholar 

  • House A, Burwell C, Brown S (2006) Ant assemblage in Brigalow regrowth vegetation. Ecol Manage Restor 7:136–140. doi:10.1111/j.1442-8903.2006.280_2.x

    Article  Google Scholar 

  • Jackson GP, Fox BJ (1996) Comparison of regeneration following burning, clearing or mineral sand mining at Tomago, NSW. Succession of ant assemblages in a coastal forest. Aust J Ecol 21:200–216. doi:10.1111/j.1442-9993.1996.tb00600.x

    Article  Google Scholar 

  • King JR, Andersen AN, Cutter AD (1998) Ants as bioindicators of habitat disturbance: validation of the functional group model for Australia’s humid tropics. Biodivers Conserv 7:1627–1638. doi:10.1023/A:1008857214743

    Article  Google Scholar 

  • Kremen C (1992) Assessing the indicator properties of species assemblages for natural areas monitoring. Ecol Appl 2:203–217. doi:10.2307/1941776

    Article  Google Scholar 

  • Kutt AS (1996) Bird populations density in thinned, unthinned and old lowland regrowth forest, east Gippsland, Victoria. Emu 96:280–284. doi:10.1071/MU9960280

    Article  Google Scholar 

  • Kutt AS, Woinarski JCZ (2007) The effects of grazing and fire on vegetation and the vertebrate assemblage in a tropical savanna woodland in north-eastern Australia. J Trop Ecol 23:95–106

    Article  Google Scholar 

  • Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856. doi:10.1046/j.1523-1739.1997.96319.x

    Article  Google Scholar 

  • Lambeck RJ (1999) Landscape planning for biodiversity conservation in agricultural regions: a case study from the wheat belt of Western Australia. Biodiversity Technical Paper No. 2:1–96 i–x

  • Lambeck RJ (2002) Focal species and restoration ecology: response to Lindenmayer et al. Conserv Biol 16:549–551. doi:10.1046/j.1523-1739.2002.02007.x

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Lindenmayer DB, Manning AD, Smith PL, Possingham HP, Fischer J, Oliver I, McCarthy MA (2002) The focal-species approach and landscape restoration: a critique. Conserv Biol 16:338–345. doi:10.1046/j.1523-1739.2002.00450.x

    Article  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Lovell S, Hamer M, Slotow R, Herbert D (2007) Assessment of congruency across invertebrate taxa and taxonomic levels to identify potential surrogates. Biol Conserv 139:113–125. doi:10.1016/j.biocon.2007.06.008

    Article  Google Scholar 

  • Majer JD (1985) Recolonization by ants of rehabilitated mineral sand mines on North Stradbroke Island, Queensland, with particular reference to seed removal. Aust J Ecol 10:31–48. doi:10.1111/j.1442-9993.1985.tb00861.x

    Article  Google Scholar 

  • Majer JD, Nichols OG (1998) Long-term recolonization patterns of ants in Western Australian rehabilitated bauxite mines with reference to their use as indicators of restoration success. J Appl Ecol 35:161–182. doi:10.1046/j.1365-2664.1998.00286.x

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi:10.1038/35012251

    Article  CAS  PubMed  Google Scholar 

  • McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biol Rev Camb Philos Soc 73:181–201. doi:10.1017/S000632319700515X

    Article  Google Scholar 

  • Monamy V, Fox BJ (2000) Small mammal succession is determined by vegetation density rather than time elapsed since disturbance. Austral Ecol 25:580–587. doi:10.1046/j.1442-9993.2000.01057.x

    Google Scholar 

  • Nakamura A, Catterall CP, House APN, Kitching RL, Burwell CJ (2007) The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use. J Insect Conserv 11:177–186. doi:10.1007/s10841-006-9034-9

    Article  Google Scholar 

  • Nash MS, Whitford WG, Van Zee J, Havstad K (1998) Monitoring changes in stressed ecosystems using spatial patterns of ant communities. Environ Monit Assess 51:201–210. doi:10.1023/A:1005939303426

    Article  Google Scholar 

  • Nichols JD, Boulinier T, Hines JE, Pollock KH, Sauer JR (1998) Inferences methods for spatial variation in species richness and community composition when not all species are detected. Conserv Biol 12:1390–1398. doi:10.1046/j.1523-1739.1998.97331.x

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity—a hierarchical approach. Conserv Biol 4:355–364. doi:10.1111/j.1523-1739.1990.tb00309.x

    Article  Google Scholar 

  • Oertli S, Muller A, Steiner D, Breitenstein A, Dorn S (2005) Cross-taxon congruence of species diversity and community similarity among three insect taxa in a mosaic landscape. Biol Conserv 126:195–205. doi:10.1016/j.biocon.2005.05.014

    Article  Google Scholar 

  • Oliver I, Beattie AJ, York A (1998) Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in eastern Australia. Conserv Biol 12:822–835. doi:10.1046/j.1523-1739.1998.97075.x

    Article  Google Scholar 

  • Pawar SS, Birand AC, Ahmed MF, Sengupta S, Raman TRS (2007) Conservation biogeography in north-east India: hierarchical analysis of cross-taxon distributional congruence. Divers Distrib 13:53–65

    Google Scholar 

  • Perner J, Malt S (2003) Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric Ecosyst Environ 98:169–181. doi:10.1016/S0167-8809(03)00079-3

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ (1997) Bryophyte and lichen diversity: a comparative study. Aust J Ecol 22:151–162. doi:10.1111/j.1442-9993.1997.tb00654.x

    Article  Google Scholar 

  • Pharo EJ, Beattie AJ, Binns D (1999) Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conserv Biol 13:282–292. doi:10.1046/j.1523-1739.1999.013002282.x

    Article  Google Scholar 

  • Pimm SL (1998) Extinction. In: Sutherland WJ (ed) Conservation science and action. Blackwell Science Ltd, Oxford, pp 20–38

    Chapter  Google Scholar 

  • Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gibbons DW (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365:335–337. doi:10.1038/365335a0

    Article  Google Scholar 

  • Rainio J, Niemela J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506. doi:10.1023/A:1022412617568

    Article  Google Scholar 

  • Read JL, Andersen AN (2000) The value of ants as early warning bioindicators: responses to pulsed cattle grazing at an Australian arid zone locality. J Arid Environ 45:231–251. doi:10.1006/jare.2000.0634

    Article  Google Scholar 

  • Read JL, Reid N, Venables WN (2000) Which birds are useful bioindicators of mining and grazing impacts in arid South Australia? Environ Manage 26:215–232. doi:10.1007/s002670010083

    Article  Google Scholar 

  • Read JL, Kovac KJ, Fatchen TJ (2005) ‘Biohyets’: a method for displaying the extent and severity of environmental impacts. J Environ Manage 77:157–164. doi:10.1016/j.jenvman.2005.04.001

    Article  PubMed  Google Scholar 

  • Ricketts TH, Daily GC, Ehrlich PR (2002a) Does butterfly diversity predict moth diversity? Testing a popluar indicator taxon at local scales. Biol Conserv 103:361–370. doi:10.1016/S0006-3207(01)00147-1

    Article  Google Scholar 

  • Ricketts TH, Daily GC, Ehrlich PR (2002b) Does butterfly diversity predict moth diversity? Testing a popular indicator taxon at local scales. Biol Conserv 103:361–370. doi:10.1016/S0006-3207(01)00147-1

    Article  Google Scholar 

  • Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu Rev Ecol Evol Syst 38:713–737. doi:10.1146/annurev.ecolsys.38.091206.095737

    Article  Google Scholar 

  • Rosenberg MS (2000) PASSaGE. Center for Evolutionary Functional Genomics/Biodesign Institue, School of Life Sciences, Arizona State University, Tempe

    Google Scholar 

  • Schieck J, Song SJ (2006) Changes in bird communities throughout succession following fire and harvest in boreal forests of western North America: literature review and meta-analyses. Can J For Res Revue Canadienne De Rech Forestiere 36:1299–1318. doi:10.1139/X06-017

    Article  Google Scholar 

  • Stephens SS, Wagner MR (2006) Using ground foraging ant (Hymenoptera: Formicidae) functional groups as bioindicators of forest health in northern Arizona ponderosa pine forests. Environ Entomol 35:937–949

    Article  Google Scholar 

  • Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18:167–173. doi:10.1111/j.1523-1739.2004.00337.x

    Article  Google Scholar 

  • Summerville KS, Ritter LM, Crist TO (2004) Forest moth taxa as indicators of lepidopteran richness and habitat disturbance: a preliminary assessment. Biol Conserv 116:9–18. doi:10.1016/S0006-3207(03)00168-X

    Article  Google Scholar 

  • Tassicker AL, Kutt AS, Vanderduys E, Mangru S (2006) The effects of vegetation structure on the birds in a tropical savanna woodland in north-eastern Australia. Rangel J 28:139–152

    Article  Google Scholar 

  • Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when, and how. Biol Conserv 132:166–182. doi:10.1016/j.biocon.2006.03.022

    Article  Google Scholar 

  • Whelan CJ (2001) Foliage structure influences foraging of insectivorous forest birds: an experimental study. Ecology 82:219–231

    Article  Google Scholar 

  • Whitford WG, Van Zee J, Nash MS, Smith WE, Herrick JE (1999) Ants as indicators of exposure to environmental stressors in North American desert grasslands. Environ Monit Assess 54:143–171. doi:10.1023/A:1005858918860

    Article  Google Scholar 

  • Wiens JA (1989) The ecology of bird communities. Part 1. Cambridge University Press, Cambridge

  • Williams P, Faith D, Manne L, Sechrest W, Preston C (2006) Complementarity analysis: mapping the performance of surrogates for biodiversity. Biol Conserv 128:253–264. doi:10.1016/j.biocon.2005.09.047

    Article  Google Scholar 

  • Wilson BA, Neldner VJ, Accad A (2002) The extent and status of remnant vegetation in Queensland and its implications for statewide vegetation management and legislation. Rangeland J 24:6–35. doi:10.1071/RJ02001

    Article  Google Scholar 

  • Wilson KA, Underwood EC, Morrison SA, Klausmeyer KR, Murdoch WW, Reyers B, Wardell-Johnson G, Marquet PA, Rundel PW, McBride MF, Pressey RL, Bode M, Hoekstra JM, Andelman S, Looker M, Rondinini C, Kareiva P, Shaw MR, Possingham HP (2007) Conserving biodiversity efficiently: what to do, where, and when. PLoS Biol 5:1850–1861. doi:10.1371/journal.pbio.0050223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Alan Andersen and Tony Hertog from CSIRO Tropical Ecosystems Research Centre in Darwin assisted with ant identifications and training of author JMB. Eric Vanderduys, Adam Tassicker and Ashley Pearcy from the CSIRO Sustainable Ecosystems provided field work assistance and contributed to the collection of the unpublished bird, reptile and habitat data. Funding for the research was provided by the Australian Government National Heritage Trust, CSIRO Sustainable Ecosystems and School of Marine and Tropical Biology, James Cook University, and this is gratefully acknowledged. JMB thanks Janette Bennett for monetary support, and Tamsyn Garby and Faith Penny (JCU) for volunteering in the lab and data entry. Dr Bronwyn Price (University of Queensland) provided Fig. 1. All authors thank Ian Hoch and Carl Rudd from Glenn Innes for permission to undertake this study on their property to their land and use of their facilities. The manuscript was much improved by comments of an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, J.M., Kutt, A.S., Johnson, C.N. et al. Ants as indicators for vertebrate fauna at a local scale: an assessment of cross-taxa surrogacy in a disturbed matrix. Biodivers Conserv 18, 3407–3419 (2009). https://doi.org/10.1007/s10531-009-9650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9650-2

Keywords

Navigation