Skip to main content
Log in

Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In this study we have examined the effects of individual gasoline hydrocarbons (C5–10,12,14 n-alkanes, C5–8 isoalkanes, alicyclics [cyclopentane and methylcyclopentane] and BTEX compounds [benzene, toluene, ethylbenzene, m-, o-, and p-xylene]) on cometabolism of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA) by Mycobacterium austroafricanum JOB5. All of the alkanes tested supported growth and both MTBE and TBA oxidation. Growth on C5–8 n-alkanes and isoalkanes was inhibited by acetylene whereas growth on longer chain n-alkanes was largely unaffected by this gas. However, oxidation of both MTBE and TBA by resting cells was consistently inhibited by acetylene, irrespective of the alkane used as growth-supporting substrate. A model involving two separate but co-expressed alkane-oxidizing enzyme systems is proposed to account for these observations. Cyclopentane, methylcyclopentane, benzene and ethylbenzene did not support growth but these compounds all inhibited MTBE and TBA oxidation by alkane-grown cells. In the case of benzene, the inhibition was shown to be due to competitive interactions with both MTBE and TBA. Several aromatic compounds (p-xylene > toluene > m-xylene) did support growth and cells previously grown on these substrates also oxidized MTBE and TBA. Low concentrations of toluene (<10 μM) stimulated MTBE and TBA oxidation by alkane-grown cells whereas higher concentrations were inhibitory. The effects of acetylene suggest strain JOB5 also has two distinct toluene-oxidizing activities. These results have been discussed in terms of their impact on our understanding of MTBE and TBA cometabolism and the enzymes involved in these processes in mycobacteria and other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bradley PM, Chapelle FH, Landmeyer JE (2001a) Effect of redox conditions on MTBE biodegradation in surface water sediments. Environ Sci Technol 35:4643–4647

    Article  CAS  PubMed  Google Scholar 

  • Bradley PM, Chapelle FH, Landmeyer JE (2001b) Methyl t-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions. Appl Environ Microbiol 67:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    CAS  PubMed  Google Scholar 

  • Cornish-Bowden A (1979) Fundamentals of enzyme kinetics. Butterworths, London

    Google Scholar 

  • Deeb RA, Hu H-Y, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol 35:312–317

    Article  CAS  PubMed  Google Scholar 

  • Finneran KT, Lovley DR (2001) Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ Sci Technol 35:1785–1790

    Article  CAS  PubMed  Google Scholar 

  • Fortin NY, Morales M, Nakagawa Y, Focht DD, Deshusses MA (2001) Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environ Microbiol 3:407–416

    Article  CAS  PubMed  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (1999) Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol 51:498–503

    Article  CAS  PubMed  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (2000) Cometabolic biodegradation of methyl tert-butyl ether by a soil consortium: effect of components present in gasoline. J Gen Appl Microbiol 46:79–84

    Article  CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the Biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Hamamura N, Page C, Long T, Semprini L, Arp DJ (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613

    CAS  PubMed  Google Scholar 

  • Hamamura N, Yeager CM, Arp DJ (2001) Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol 67:4992–4998

    Article  CAS  PubMed  Google Scholar 

  • Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

    CAS  PubMed  Google Scholar 

  • Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067

    CAS  PubMed  Google Scholar 

  • Hristova KR, Schmidt R, Chakicherla AY, Legler TC, Wu J, Chain PSG, Scow KM, Kane SR (2007) Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel-oxygenates methyl tert-butyl ether and ethanol. Appl Environ Microbiol 73:7347–7357

    Article  CAS  PubMed  Google Scholar 

  • Hyman MR, Taylor C, O’Reilly KT (2000) Cometabolic degradation of MTBE by iso-alkane-utilizing bacteria from gasoline-impacted soils. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus, pp 149–155

    Google Scholar 

  • Johnson R, Pankow J, Bender D, Price C, Zogorski J (2000) MTBE: to what extent will past releases contaminate community water supply wells? Environ Sci Technol 34:210A–217A

    Article  CAS  Google Scholar 

  • Johnson EL, Smith CA, O’Reilly KT, Hyman MR (2004) Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE. Appl Environ Microbiol 70:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl tert-butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945

    Article  CAS  PubMed  Google Scholar 

  • Kharoune M, Pauss A, Lebeault JM (2001) Aerobic biodegradation of an oxygenates mixture: ETBE, MTBE and TAME in an upflow fixed-bed reactor. Water Res 35:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Kotani T, Kawashima Y, Yuirmoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monoooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192

    Article  CAS  PubMed  Google Scholar 

  • Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ Sci Technol 39:213–220

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Cho K-S (2009) Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp. J Hazard Mater. doi:10.1016/j.jhazmat.2009.01.035

  • Lin CW, Tsai SL, Hou SN (2007) Effects of environmental settings on MTBE removal for a mixed culture and its monoculture isolation. Appl Microbiol Biotechnol 74:194–201

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Speitel GEJ, Georgiou G (2001) Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67:2197–2201

    Article  CAS  PubMed  Google Scholar 

  • Lopes Ferreira N, Mathis H, Labbé D, Monot F, Greer CW, Fayolle-Guichard F (2007) n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 75:909–919

    Article  CAS  PubMed  Google Scholar 

  • Mackay D, Shiu WY (1981) A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data 10:1175–1199

    Article  CAS  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1, 4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Technol 40:5435–5442

    Article  CAS  PubMed  Google Scholar 

  • Mays MA (1989) The use of oxygenated hydrocarbons in gasoline and their contribution to reducing urban air pollution. Pure Appl Chem 61:1373–1378

    Article  CAS  Google Scholar 

  • McAuliffe C (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons. J Phys Chem 70:1267–1275

    Article  CAS  Google Scholar 

  • Miller ME, Stuart JD (2000) Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method. Anal Chem 72:622–625

    Article  CAS  PubMed  Google Scholar 

  • Miller KD, Johnson PC, Bruce CL (2001) Full-scale in situ biobarrier demonstration for containment and treatment of MTBE. Remediation J 12:25–36

    Article  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu CH, Hristova KR, Hanada S, Meng XY, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  PubMed  Google Scholar 

  • Ooyama J, Foster JW (1965) Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie van Leeuwenhoek 31:45–65

    Article  CAS  PubMed  Google Scholar 

  • Peil WJ (1989) Ethers will play key role in “clean” gasoline blends. Oil Gas J 87:40–44

    Google Scholar 

  • Polak J, Lu BC-Y (1973) Mutual solubilities of hydrocarbons and water at 0 and 25°C. Can J Chem 51:4018–4023

    Article  CAS  Google Scholar 

  • Pruden A, Suidan M (2004) Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1. Biodegradation 15:213–227

    Article  CAS  PubMed  Google Scholar 

  • Pruden A, Suidan MT, Venosa AD, Wilson GJ (2001) Biodegradation of methyl tert-butyl ether under various substrate conditions. Environ Sci Technol 35:4235–4241

    Article  CAS  PubMed  Google Scholar 

  • Pruden A, Sedran M, Suidan M, Venosa A (2003) Biodegradation of MTBE and BTEX in an aerobic fluidized bed reactor. Water Sci Technol 47:123–128

    CAS  PubMed  Google Scholar 

  • Raynal M, Pruden A (2008) Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions. Biodegradation 19:269–282

    Article  CAS  PubMed  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum-contaminated soils: biological, physical and chemical processes. CRC Press, Boca Raton

    Book  Google Scholar 

  • Schmidt R, Battaglia V, Scow K, Kane S, Hristova KR (2008) Involvement of a novel enzyme MdpA, in methyl tert-butyl ether degradation by Methylibium petroleiphilum PM1. Appl Environ Microbiol 74:6631–6638

    Article  CAS  PubMed  Google Scholar 

  • Sharp JO, Wood TK, Alvarez-Cohen L (2005) Aerobic biodegradation of n-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol Bioeng 89:608–618

    Article  CAS  PubMed  Google Scholar 

  • Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monoooxygenase is responsible for n-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938

    Article  CAS  PubMed  Google Scholar 

  • Shim E-H, Kim J, Cho K-S, Ryu HW (2006) Biofiltration and inhibitory interactions of gaseous benzene, toluene, xylene, and methyl tert-butyl ether. Environ Sci Technol 40:3089–3094

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003a) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003b) Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5–C8 n-alkanes. Appl Environ Microbiol 69:7385–7394

    Article  CAS  PubMed  Google Scholar 

  • Solano-Serena F, Marchal R, Casarégola S, Vasnier C, Lebeault JM, Vandecasteele J-P (2000) A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons. Appl Environ Microbiol 66:2392–2399

    Article  CAS  PubMed  Google Scholar 

  • Solano-Serena F, Marchal R, Heiss S, Vandecasteele J-P (2004) Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J Appl Microbiol 97:629–639

    Article  CAS  PubMed  Google Scholar 

  • Somsamak P, Cowan RM, Häggblom MM (2001) Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions. FEMS Microbiol Ecol 37:259–264

    Article  CAS  Google Scholar 

  • Squillace PJ, Zogorski JS, Wilber WG, Price CV (1996) Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States 1993–1994. Environ Sci Technol 30:1721–1730

    Article  CAS  Google Scholar 

  • Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Smits THM, Whyte LG, Schorcht S, Röthlisberger M, Plaggemeier T, Engesser K-H, Witholt B (2002) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682

    Article  PubMed  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Röthlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  PubMed  CAS  Google Scholar 

  • Vanderberg LA, Perry JJ (1994) Dehalogenation by Mycobacterium vaccae JOB-5: role of the propane monooxygenase. Can J Microbiol 40:169–172

    Article  CAS  PubMed  Google Scholar 

  • Vanderberg LA, Burback BL, Perry JJ (1995a) Biodegradation of trichloroethylene by Mycobacterium vaccae. Can J Microbiol 41:298–301

    Article  CAS  PubMed  Google Scholar 

  • Vanderberg LA, Perry JJ, Unkefer PJ (1995b) Catabolism of 2, 4, 6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol 43:937–945

    Article  CAS  PubMed  Google Scholar 

  • Wackett LP, Brusseau GA, Householder SR, Hanson RS (1989) Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol 55:2960–2964

    CAS  PubMed  Google Scholar 

  • Wang X, Deshusses MA (2007) Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants. Biodegradation 18:37–50

    Article  PubMed  CAS  Google Scholar 

  • Wiegant WW, deBont JAM (1980) A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol 120:325–331

    CAS  Google Scholar 

  • Wilson GJ, Richter AP, Suidan MT, Venosa AD (2001) Aerobic biodegradation of gasoline oxygenates MTBE and TBA. Water Sci Technol 43:277–284

    CAS  PubMed  Google Scholar 

  • Wilson RD, Mackay DM, Scow KM (2002) In situ MTBE biodegradation supported by diffusive oxygen release. Environ Sci Technol 36:190–199

    Article  CAS  PubMed  Google Scholar 

  • Windholz M, Budavari S, Blumetti RF, Otterbein ES (eds) (1983) The Merck index, 10th edn. Merck and Co., Inc., Rahway, New Jersey

  • Youngster LKG, Somsamak P, Häggblom MM (2008) Effects of co-substrate and inhibitors on the anaerobic O-demethylation of methyl tert-butyl ether (MTBE). Appl Microbiol Biotechnol 80:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 74:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Zein MM, Pinto PX, Garcia-Blanco S, Suidan MT, Venosa AD (2006a) Treatment of groundwater contaminated with PAHs, gasoline hydrocarbons and methyl tert-butyl ether in a laboratory biomass-retaining bioreactor. Biodegradation 17:57–69

    Article  CAS  PubMed  Google Scholar 

  • Zein MM, Suidan MT, Venosa AD (2006b) Bioremediation of groundwater contaminated with gasoline hydrocarbons and oxygenates using a membrane-based reactor. Environ Sci Technol 40:1997–2003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding to M.R.H. from the American Petroleum Institute. The views expressed in this publication do not necessarily reflect those of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

House, A.J., Hyman, M.R. Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 21, 525–541 (2010). https://doi.org/10.1007/s10532-009-9321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9321-8

Keywords

Navigation