Skip to main content
Log in

Cloning, expression and functional analysis of nicotinate dehydrogenase gene cluster from Comamonas testosteroni JA1 that can hydroxylate 3-cyanopyridine

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A nicotinate dehydrogenase (NaDH) gene cluster was cloned from Comamonas testosteroni JA1. The enzyme, termed NaDHJA1, is composed of 21, 82, and 46 kDa subunits, respectivley containing [2Fe2S], Mo(V) and cytochrome c domains. The recombinant NaDHJA1 can catalyze the hydroxylation of nicotinate and 3-cyanopyridine. NaDHJA1 protein exhibits 52.8% identity to the amino acid sequence of NaDHKT2440 from P. putida KT2440. Sequence alignment analysis showed that the [2Fe2S] domain in NaDHJA1 had a type II [2Fe-2S] motif and a type I [2Fe-2S] motif, while the same domain in NaDHKT2440 had only a type II [2Fe-2S] motif. NaDHKT2440 had an additional hypoxanthine dehydrogenase motif that NaDHJA1 does not have. When the small unit of NaDHJA1 was replaced by the small subunit from NaDHKT2440, the hybrid protein was able to catalyze the hydroxylation of nicotinate, but lost the ability to catalyze hydroxylation of 3-cyanopyridine. In contrast, after replacement of the small subunit of NaDHKT2440 with the small subunit from NaDHJA1, the resulting hybrid protein NaDHJAS+KTL acquired the ability to hydroxylate 3-cyanopyridine. The subunits swap results indicate the [2Fe2S] motif determines the 3-cyanopyridine hydroxylation ability, which is evidently different from the previous belief that the Mo motif determines substrate specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ (2006) Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc Natl Acad Sci USA 103:12341–12346

    Article  CAS  PubMed  Google Scholar 

  • Andreesen JR, Fetzner S (2002) The molybdenum-containing hydroxylases of nicotinate, isonicotinate, and nicotine. Met Ions Biol Syst 39:405–430

    CAS  PubMed  Google Scholar 

  • Behrman EJ, Stanier RY (1957) The bacterial oxidation of nicotinic acid. J Biol Chem 228:923–945

    CAS  PubMed  Google Scholar 

  • Berry DF, Francis AJ, Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59

    CAS  PubMed  Google Scholar 

  • Blatny JM, Brautaset T, Winther-Larsen HC, Haugan K, Valla S (1997a) Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379

    CAS  PubMed  Google Scholar 

  • Blatny JM, Brautaset T, Winther-Larsen HC, Karunakaran P, Valla S (1997b) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in gram-negative bacteria. Plasmid 38:35–51

    Article  CAS  PubMed  Google Scholar 

  • Bonin I, Martins BM, Purvanov V, Fetzner S, Huber R, Dobbek H (2004) Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. Structure 12:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) A manual for genetic engineering: advanced bacterial genetics. Cold Spring Harbor, NY

    Google Scholar 

  • Doolittle RF (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64:287–314

    Article  CAS  PubMed  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  PubMed  Google Scholar 

  • Ensign JC, Rittenberg SC (1964) The pathway of nicotinic acid oxidation by a Bacillus species. J Biol Chem 239:2285–2291

    CAS  PubMed  Google Scholar 

  • Grether-Beck S, Igloi GL, Pust S, Schilz E, Decker K, Brandsch R (1994) Structural analysis and molybdenum-dependent expression of the pAO1-encoded nicotine dehydrogenase genes of Arthrobacter nicotinovorans. Mol Microbiol 13:929–936

    Article  CAS  PubMed  Google Scholar 

  • Harary I (1957) Bacterial fermantation of nicotinic acid. II. Anaerobic reversible hydroxylation of nicotinic acid to 6-hydroxynicotinic acid. J Biol Chem 227:823–831

    CAS  PubMed  Google Scholar 

  • Hughes DE (1955) 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochem J 60:303–310

    CAS  PubMed  Google Scholar 

  • Hunt AL (1959) Purification of the nicotinic acid hydroxylase system of Pseudomonas fluorescens KB1. Biochem J 72:1–7

    CAS  PubMed  Google Scholar 

  • Hunt AL, Hughes DE, Lowenstein JM (1958) The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochem J 69:170–173

    CAS  PubMed  Google Scholar 

  • Hurh B, Ohshima M, Yamane T, Nagasawa T (1994a) Microbial production of 6-hydroxynicotinic acid, an important building block for the synthesis of modern insecticides. J Ferment Bioeng 77:382–385

    Article  CAS  Google Scholar 

  • Hurh B, Yamane T, Nagasawa T (1994b) Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluoescens TN5. Ferment Bioeng 78:19–26

    Article  CAS  Google Scholar 

  • Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuka K, Takamura Y (1994) Transformation of Pseudomonas putida by electroporation. Biosci Biotechnol Biochem 58:851–854

    Article  CAS  PubMed  Google Scholar 

  • Jiménez JI, Canales A, Jiménez-Barbero J, Ginalski K, Rychlewski L, García JL, Díaz E (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci USA 105(32):11329–11334

    Article  PubMed  Google Scholar 

  • Jones MV (1973) Cytochrome c linked nicotinic acid hydroxylase in Pseudomonas ovalis Chester. FEBS Lett 32:321–324

    Article  CAS  PubMed  Google Scholar 

  • Jones MV, Hughes DE (1972) The oxidation of nicotinic acid by Pseudomonas ovalis Chester. The terminal oxidase. Biochem J 129:755–761

    CAS  PubMed  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lu WH, Wang X, Xu L, Dai YJ, Yuan S (2005) Induction of nicotinic acid hydroxylase activity of Pseudomonas putida NA-1 and optimization of transformation conditions. Acta Microbiologica Sinica 45:6–9

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Johdo O, Nagamatsu Y, Yoshimoto A (2002) Cloning and characterization of a glycosyltransferase gene involved in the biosynthesis of anthracycline antibiotic beta-rhodomycin from Streptomyces violaceus. FEMS Microbiol Lett 206:163–168

    CAS  PubMed  Google Scholar 

  • Nagel M, Andreesen JR (1989) Molybdenum-dependent degradation of nicotinic acid by Bacillus sp. DSM 2923. FEMS Microbiol Lett 59:147–152

    Article  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 2. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Tautz D, Renz M (1983) An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 132:14–19

    Article  CAS  PubMed  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Medigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yuan S, Chen T, Ma PJ, Shang GD, Dai YJ (2009) Cloning, heterologous expression, and functional characterization of the nicotinate dehydrogenase gene from Pseudomonas putida KT2440. Biodegradation 20:541–549

    Article  CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Sakamoto T, Sashida R, Ueda M, Morimoto Y, Nagasawa T (1995) Microbial hydroxylation of 3-cyanopyridine to 3-cyano-6-hydroxypyridine. Biosci Biotechnol Biochem 59:572–575

    Article  CAS  Google Scholar 

  • Yuan S, Yang Y, Sun J, Dai YJ (2005) A combined technology of growing culture hydroxylation of nicotinic acid and resting cells hydroxylation of 3-cyanopyridine by Comamonas testosterone JA1. Eng Life Sci 5:369–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Isabelle Vallet-Gely, Bruno Lemaitre laboratory, FRANCE, and He Jian, Nanjing Agriculture University, Department of Life Science, for kindly providing Pseudomonas putida L48 and Pseudomonas putida KT2440, respectively. This work was supported by the Key Fundamental Research Program of Jiangsu Higher Education Institution of China (06KJA21016), the Natural Science Foundation of Jiangsu Higher Education Institution of China (04KJB180071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Chen, T., Ma, P. et al. Cloning, expression and functional analysis of nicotinate dehydrogenase gene cluster from Comamonas testosteroni JA1 that can hydroxylate 3-cyanopyridine. Biodegradation 21, 593–602 (2010). https://doi.org/10.1007/s10532-010-9327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9327-2

Keywords

Navigation