Skip to main content
Log in

Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Strain Yw12, isolated from activated sludge, could completely degrade and utilize methyl parathion as the sole carbon, phosphorus and energy sources for growth in the basic salt media. It could also completely degrade and utilize p-nitrophenol as the sole carbon and energy sources for growth in the minimal salt media. Phenotypic features, physiological and biochemical characteristics, and phylogenetic analysis of 16S rRNA sequence showed that this strain belongs to the genus of Agrobacterium sp. Response surface methodology was used to optimize degradation conditions. Under its optimal degradation conditions, 50 mg l−1 MP was completely degraded within 2 h by strain Yw12 and the degradation product PNP was also completely degraded within 6 h. Furthermore, strain Yw12 could also degrade phoxim, methamidophos, chlorpyrifos, carbofuran, deltamethrin and atrazine when provided as the sole carbon and energy sources. Enzymatic analysis revealed that the MP degrading enzyme of strain Yw12 is an intracellular enzyme and is expressed constitutively. These results indicated that strain Yw12 might be used as a potential and effective organophosphate pesticides degrader for bioremediation of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhatti ZI, Toda H, Furukawa K (2002) p-nitrophenol degradation by activated sludge attached on nonwovens. Water Res 36:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Bhushan B, Chauhan A, Samanta SK, Jain RK (2000) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626–630

    Article  PubMed  CAS  Google Scholar 

  • Bourassa S, Vadeboncoeur C (1992) Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system. J Gen Microbiol 138:769–777

    PubMed  CAS  Google Scholar 

  • Brown K (1980) Phosphotriesterases of Flavobacterium sp. Soil Biol Biochem 12:105–112

    Article  CAS  Google Scholar 

  • Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    PubMed  CAS  Google Scholar 

  • De Crombrugghe B, Perlman RL, Varmus HE, Pastan I (1969) Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3′,5′-monophosphate. J Biol Chem 244:5828–5835

    PubMed  Google Scholar 

  • Dumas DP, Durst HD, Landis WG, Raushel FM, Wild JR (1990) Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys 277:155–159

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Ou LT, Ogram A (1997) Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl Environ Microbiol 63:1332–1337

    PubMed  CAS  Google Scholar 

  • Gangming Xu, Zheng Wei, Yingying Li, Wang Shenghui, Zhang Jingshun, Yan Y (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Int Biodeterior Biodegrad 62:51–56

    Article  Google Scholar 

  • Gao J et al (2009) The occurrence and spatial distribution of organophosphorous pesticides in Chinese surface water. Bull Environ Contam Toxicol 82:223–229

    Article  PubMed  CAS  Google Scholar 

  • Guo WQ et al (2009) Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour Technol 100:1192–1196

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jiang J, Zhang R, Li R, Gu JD, Li S (2007) Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 18:403–412

    Article  PubMed  CAS  Google Scholar 

  • Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    PubMed  CAS  Google Scholar 

  • Kellogg ST, Chatterjee DK, Chakrabarty AM (1981) Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135

    Article  PubMed  CAS  Google Scholar 

  • Kim JR, Ahn YJ (2009) Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100. Biodegradation 20:487–497

    Article  PubMed  CAS  Google Scholar 

  • Krishna KR, Philip L (2008) Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates. J Environ Sci Health B 43:157–171

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni M, Chaudhari A (2006) Biodegradation of p-nitrophenol by Pseudomonas putida. Bioresoure Technol 97:982–988

    Article  CAS  Google Scholar 

  • Lai K, Stolowich NJ, Wild JR (1995) Characterization of P–S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Arch Biochem Biophys 318:59–64

    Article  PubMed  CAS  Google Scholar 

  • Li YY, Zhou B, Li W, Peng X, Zhang JS, Yan YC (2008) Mineralization of p-nitrophenol by a new isolate Arthrobacter sp. Y1. J Environ Sci Health B 43:692–697

    Article  PubMed  CAS  Google Scholar 

  • Li W et al (2009) Biodegradation and detoxification of endosulfan in aqueous medium and soil by Achromobacter xylosoxidans strain CS5. J Hazard Mater 167:209–216

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114

    Article  PubMed  CAS  Google Scholar 

  • McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311

    PubMed  CAS  Google Scholar 

  • Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99:7553–7564

    Article  PubMed  CAS  Google Scholar 

  • Mulbry WW, Karns JS (1989) Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl Environ Microbiol 55:289–293

    PubMed  CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    PubMed  CAS  Google Scholar 

  • Munnecke D, Hsieh D (1976) Pathway of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69

    PubMed  CAS  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    PubMed  CAS  Google Scholar 

  • Pakala SB et al (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Qiu XH, Bai WQ, Zhong QZ, Li M, He FQ, Li BT (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan MP, Lalithakumari D (1999) Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl Biochem Biotechnol 80:1–12

    Article  PubMed  CAS  Google Scholar 

  • Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 40:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Raveh L et al (1992) Protection against tabun toxicity in mice by prophylaxis with an enzyme hydrolyzing organophosphate esters. Biochem Pharmacol 44:397–400

    Article  PubMed  CAS  Google Scholar 

  • Rehman A, Raza ZA, Afzal M, Khalid ZM (2007) Kinetics of p-nitrophenol degradation by Pseudomonas pseudomallei wild and mutant strains. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Roodveldt C, Tawfik DS (2005a) Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng Des Sel 18:51–58

    Article  PubMed  CAS  Google Scholar 

  • Roodveldt C, Tawfik DS (2005b) Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Biochemistry 44:12728–12736

    Article  PubMed  CAS  Google Scholar 

  • Scott C et al (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  Google Scholar 

  • Shen YJ, Lu P, Mei H, Yu HJ, Hong Q, Li SP (2010) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation of p-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tripathi AM, Agarwal RA (1998) Molluscicidal and anti-AChE activity of tertiary mixtures of pesticides. Arch Environ Contam Toxicol 34:271–274

    Article  PubMed  CAS  Google Scholar 

  • Tse H, Comba M, Alaee M (2004) Method for the determination of organophosphate insecticides in water, sediment and biota. Chemosphere 54:41–47

    Article  PubMed  CAS  Google Scholar 

  • van der Meer JR (1994) Genetic adaptation of bacteria to chlorinated aromatic compounds. FEMS Microbiol Rev 15:239–249

    Article  PubMed  Google Scholar 

  • Wang L, Wen Y, Guo X, Wang G, Li S, Jiang J (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation 21:513–523

    Article  PubMed  CAS  Google Scholar 

  • Watkins LM, Mahoney HJ, McCulloch JK, Raushel FM (1997) Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J Biol Chem 272:25596–25601

    Article  PubMed  CAS  Google Scholar 

  • Xinghui Qiu QZ, Mei Li, Bai Wenqin, Li Baotong (2007) Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. Int Biodeterior Biodegrad 59(4):297–301

    Article  Google Scholar 

  • Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29:1469–1473

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zhao YH, Zhang BX, Yang CH, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Cui Z, Jiang J, He J, Gu X, Li S (2005) Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51:337–343

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Hong Q, Xu J, Zhang X, Li S (2006) Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17:275–283

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Sun Z, Li Y, Peng X, Li W, Yan Y (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J Hazard Mater 163:723–728

    Article  PubMed  CAS  Google Scholar 

  • Zhang C et al (2010) Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity. Bioresour Technol 101:3423–3429

    Article  PubMed  CAS  Google Scholar 

  • Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shubo Gu (College of Agricultural Sciences, Shandong Agricultural University) for providing facilities and helping with GC analysis. We are most grateful to MARahman for critical reading of the manuscript. This study was supported by Hi-Tech Research and Development Program of China (No. 2008AA10Z402) and Basic Research Fund of CAAS (Nos. 0042009001, 0042011006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhang, C. & Yan, Y. Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12. Biodegradation 23, 107–116 (2012). https://doi.org/10.1007/s10532-011-9490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9490-0

Keywords

Navigation