Skip to main content
Log in

Bioreduction of para-chloronitrobenzene in a hydrogen-based hollow-fiber membrane biofilm reactor: effects of nitrate and sulfate

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A continuous-stirred, hydrogen-based, hollow-fiber membrane biofilm reactor (HFMBfR) that was active in nitrate and sulfate reductions was shown to be effective for degradation or detoxification of para-chloronitrobenzene (p-CNB) in water by biotransforming it first to para-chloroaniline (nitro-reduction) and then to aniline (reductive dechlorination) with hydrogen (H2) as an electron donor. A series of short-term experiments examined the effects of nitrate and sulfate on p-CNB bioreduction. The results obtained showed both higher nitrate and sulfate concentration declined the p-CNB bioreduction in the biofilm, and this suggests the competition for H2 caused less H2 available for the p-CNB bioreduction when the H2 demand for the reductions was larger. Denitrification and sulfate reduction intermediates were thought to be potential factors inhibiting the p-CNB bioreduction. Analysis of electron-equivalent fluxes and reaction orders in the biofilm further demonstrated both denitrification and sulfate reduction competed more strongly for H2 availability than p-CNB bioreduction. These findings have significant implications for the HFMBfR used for degrading p-CNB under denitrifying and/or sulfate reducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernner DJ, Krieg NR, Staley JT (2005) The Proteobacteria part C: the alpha-, beta-, delta-, and Epsilonproteobacteria. In: Bernner DJ, Krieg NR, Staley JT, Boone DR, De Vos P, Garrity GM, Goodfellow M, Krieg NR, Rainey FA, Schleifer K (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York, pp 323–379

    Google Scholar 

  • Chang CC, Tseng SK, Chang CC, Ho CM (2003) Reductive dechlorination of 2-chlorophenol in a hydrogenotrophic, gas-permeable, silicone membrane bioreactor. Bioresour Technol 90:323–328

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Rittmann BE (2007) Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen-based membrane biofilm reactor. Biotechnol Bioeng 97:52–60

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Li XH, Rittmann BE (2006) Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. Chemosphere 65:24–34

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Krajmalnik-Brown R, Rittmann BE (2008) Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ Sci Technol 42:477–483

    Article  CAS  PubMed  Google Scholar 

  • Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J Water Supply Res T 50:161–171

    CAS  Google Scholar 

  • Fuller ME, Manning JF (1998) Evidence for differential effects of 2,4,6-trinitrotoluene and other munitions compounds on specific subpopulations of soil microbial communities. Environ Toxicol Chem 17:2185–2195

    Article  CAS  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresour Technol 99:3965–3974

    Article  CAS  PubMed  Google Scholar 

  • Heijman CG, Hollinger C, Claus MA, Schwarzenbach RP, Zeyer J (1993) Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl Environ Microbiol 59:4350–4353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katsivela E, Wray V, Pieper DH, Wittich RM (1999) Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl Environ Microbiol 65:1405–1412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang C (2010) Production, market and development of nitrochlorobenzene. Fine Chem Ind Raw Mater Intermed 9:38–40 (in Chinese)

    Google Scholar 

  • Linch AL (1974) Biological monitoring for industrial exposure to cyanogenic aromatic nitro and amino compounds. Am Ind Hyg Assoc J 35:426–432

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ (2009) Aqueous p-chloronitrobenzene decomposition induced by contact glow discharge electrolysis. J Hazard Mater 166:1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang S, Zhou NY (2005) A new isolate of Pseudomonas stutzeri that degrades 2-chloronitrobenzene. Biotechnol Lett 27:275–278

    Article  CAS  PubMed  Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR (1998) Reductive dechlorination of tetrachloroethene to ethene by two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson DK, Hozalski RM, Clapp LW, Semmens MJ, Novak PJ (2010) Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture. Biorem J 6:225–236

    Article  Google Scholar 

  • Nerenberg R, Rittmann BE (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49:223–230

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Lim SJ, Chang YK, Livingston AG, Kim HS (1999) Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl Environ Microbiol 65:1083–1091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill Book Co., New York

    Google Scholar 

  • Shen XC, Feng HH, Wang FR, Liu LH (1997) Water quality simulation of 4-nitrochlorobenzene in the Middle Yellow River. Adv Water Sci 8:264–269 (in Chinese)

    CAS  Google Scholar 

  • Shen JM, Chen ZL, Xu ZZ, Li XY, Xu BB, Qi F (2008) Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J Hazard Mater 152:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Roy R, Greer CW (2000) Reduction in denitrification activity in field soils exposed to long-term contamination by 2,4,6-trinitrotoluene (TNT). FEMS Microbiol Ecol 32:61–68

    Article  CAS  PubMed  Google Scholar 

  • Sun RT, Chen M, Yu B, Wang YG (2002) Analysis of chloronitrobenzenes compounds in untreated water by gas chromatographic. China J Public Health Eng 1:149 (in Chinese)

    CAS  Google Scholar 

  • Susarla S, Masunaga S, Yonezawa Y (1996) Transformations of chloronitrobenzenes in anaerobic sediment. Chemosphere 32:967–977

    Article  Google Scholar 

  • Tas DO, Pavlostathis SG (2008) Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environ Sci Technol 42:3234–3240

    Article  PubMed  Google Scholar 

  • Tas DO, Pavlostathis SG (2010) Microbial transformation of pentachloronitrobenzene under nitrate reducing conditions. Biodegradation 21:691–702

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL (1991) Wastewater engineering: treatment, disposal and reuse. McGraw-Hill Book Co., New York

    Google Scholar 

  • Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia SQ, Zhang YH, Zhong FH (2009) A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water. Bioresour Technol 100:6223–6228

    Article  CAS  PubMed  Google Scholar 

  • Xia SQ, Li HX, Zhang ZQ, Zhang YH, YangX Jia RY, Xie K, Xu XT (2011) Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. J Hazard Mater 192:593–598

    Article  CAS  PubMed  Google Scholar 

  • Xu GL, Xu XZ (1999) Determination of trace organic pollutants in the environment by high-performance liquid chromatography. J Zhejiang Univ 33:323–326 (in Chinese)

    CAS  Google Scholar 

  • Zhang LP, Zhang ZN (2007) Determination of nitrochlorobenzene in water and wastewater by purge and trap-gas chromatography-mass spectrometry. Environ Pollut Control 29(306–308):318 (in Chinese)

    Google Scholar 

  • Zhang TY, You LY, Zhang YL (2006) Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles. Dyes Pigments 68:95–100

    Article  CAS  Google Scholar 

  • Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biot 72:797–803

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (50978190), Shanghai Shuguang Tracking Program (10GG12), Guangxi Natural Science Foundation (2013GXNSFBA019208), Research Funds of Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology (1201Z026), and Research start-funds of Guilin University of Technology (GUT2011042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqing Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, Z., Xu, X. et al. Bioreduction of para-chloronitrobenzene in a hydrogen-based hollow-fiber membrane biofilm reactor: effects of nitrate and sulfate. Biodegradation 25, 205–215 (2014). https://doi.org/10.1007/s10532-013-9652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9652-3

Keywords

Navigation