Skip to main content
Log in

Biodegradation of the phytoestrogen luteolin by the endophytic fungus Phomopsis liquidambari

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Phytoestrogens are plant-derived hormonally-active compounds known to cause varied reproductive, immunosuppressive and behavioral effects in vertebrates. In this study, biodegradation of luteolin, a common phytoestrogen, was investigated during incubation with endophytic fungus Phomopsis liquidambari. The optimum concentration of luteolin as sole carbon source supplied in culture was 200 mg L−1, which allowed 97 and 99 % degradation of luteolin by P. liquidambari in liquid culture and soil conditions, respectively. The investigation of the fungal metabolic pathway showed that luteolin was first decomposed to caffeic acid and phloroglucinol. These intermediate products were degraded to protocatechuic acid and hydroxyquinol, respectively, and then rings were opened by ring-cleavage dioxygenases. Two novel genes encoding the protocatechuate 3,4-dioxygenase and hydroxyquinol 1,2-dioxygenase were successfully cloned. Reverse-transcription quantitative polymerase chain reaction demonstrated that expression levels of mRNA of these two genes increased significantly after P. liquidambari was induced by the intermediate products caffeic acid and phloroglucinol, respectively. These results revealed that P. liquidambari can biodegrade luteolin efficiently and could potentially be used to bioremediate phytoestrogen contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HPLC–MS:

High-performance liquid chromatography–mass spectrometry

qRT-PCR:

Reverse-transcription quantitative polymerase chain reaction

EDCs:

Endocrine-disrupting chemicals

Prc:

Protocatechuate 3,4-dioxygenase

Hyd:

Hydroxyquinol 1,2-dioxygenase

References

  • Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102:9718–9722

    Article  CAS  PubMed  Google Scholar 

  • Barclay M, Day JC, Thompson IP, Knowles CJ, Bailey MJ (2002) Substrate-regulated cyanide hydratase (chy) gene expression in Fusarium solani: the potential of a transcription-based assay for monitoring the biotransformation of cyanide complexes. Environ Microbiol 4:183–189

    Article  CAS  PubMed  Google Scholar 

  • Beninger CW, Hall JC (2005) Allelopathic activity of 7-O-β-luteolin glucuronide isolated from Chrysanthemum morifolium L. Biochem Syst Ecol 33:103–111

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braune A, Gütschow M, Engst W, Blaut M (2001) Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 67:5558–5567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cederroth CR, Zimmermann C, Nef S (2012) Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 355:192–200

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Li LP, Lu XY, Jiang HD, Zeng S (2007) Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J Agric Food Chem 55:273–277

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Peng Y, Dai CC, Ju Q (2011) Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari. Appl Soil Ecol 51:102–110

    Article  Google Scholar 

  • Chen Y, Wang HW, Li L, Dai CC (2013a) The potential application of the endophyte Phomopsis liquidambari to the ecological remediation of long-term cropping soil. Appl Soil Ecol 67:20–26

    Article  Google Scholar 

  • Chen Y, Xie XG, Ren CG, Dai CC (2013b) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574

    Article  CAS  PubMed  Google Scholar 

  • Crawford RL (1975) Novel pathway for degradation of protocatechuic acid in Bacillus species. J Bacteriol 121:531–536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dagley S, Geary P, Wood J (1968) The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J 109:559–568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P (2013) Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem 48:1532–1552

    Article  CAS  Google Scholar 

  • Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34

    Article  CAS  PubMed  Google Scholar 

  • Fowler PA, Bellingham M, Sinclair KD, Evans NP, Pocar P, Fischer B, Schaedlich K, Schmidt JS, Amezaga MR, Bhattacharya S (2012) Impact of endocrine-disrupting compounds (EDCs) on female reproductive health. Mol Cell Endocrinol 355:231–239

    Article  CAS  PubMed  Google Scholar 

  • Fu YJ, Liu W, Zu YG, Tong MH, Li SM, Yan MM, Efferth T, Luo H (2008) Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chem 111:508–512

    Article  CAS  Google Scholar 

  • Fujisawa H, Hayaishi O (1968) Protocatechuate 3, 4-dioxygenase. I. Crystallization and characterization. J Biol Chem 243:2673–2681

    CAS  PubMed  Google Scholar 

  • Hamlin HJ, Guillette LJ (2011) Embryos as targets of endocrine disrupting contaminants in wildlife. Birth Defects Res (Part C) 93:19–33

    Article  CAS  Google Scholar 

  • Hartley RD, Buchan H (1979) High-performance liquid chromatography of phenolic acids and aldehydes derived from plants or from the decomposition of organic matter in soil. J Chromatogr A 180:139–143

    Article  CAS  Google Scholar 

  • Hopper W, Mahadevan A (1997) Degradation of catechin by Bradyrhizobium japonicum. Biodegradation 8:159–165

    Article  CAS  Google Scholar 

  • Jefferson WN, Padilla-Banks E, Phelps JY, Cantor AM, Williams CJ (2012a) Neonatal phytoestrogen exposure alters oviduct mucosal immune response to pregnancy and affects preimplantation embryo development in the mouse. Biol Reprod 87:10–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Jefferson WN, Patisaul HB, Williams CJ (2012b) Reproductive consequences of developmental phytoestrogen exposure. Reproduction 143:247–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin D, Bai Z, Chang D, Hoefel D, Jin B, Wang P, Wei D, Zhuang G (2012) Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11: genetic identification and degradation kinetics. J Hazard Mater 221:80–85

    Article  PubMed  Google Scholar 

  • Krumholz LR, Crawford RL, Hemling ME, Bryant MP (1987) Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol 169:1886–1890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kukić J, Popović V, Petrović S, Mucaji P, Ćirić A, Stojković D, Soković M (2008) Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem 107:861–868

    Article  Google Scholar 

  • Latus M, Seitz H, Eberspacher J, Lingens F (1995) Purification and characterization of hydroxyquinol 1, 2-dioxygenase from Azotobacter sp. strain GP1. Appl Environ Microbiol 61:2453–2460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59

    Article  CAS  PubMed  Google Scholar 

  • Medina ML, Kiernan UA, Francisco WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41:327–335

    Article  CAS  PubMed  Google Scholar 

  • Montaño M, Gutleb AC, Murk AJ (2013) Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife. Environ Sci Technol 47:6071–6081

    PubMed  Google Scholar 

  • Nordeen SK, Bona BJ, Jones DN, Lambert JR, Jackson TA (2013) Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin. Horm Cancer 4:293–300

    Article  CAS  PubMed  Google Scholar 

  • Pillai BV, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raj A, Singh A, Sharma A, Singh N, Kumar P, Bhatia V (2011) Antifertility activity of medicinal plants on reproductive system of female rat. Int J Bio-Eng Sci Technol 2:125–131

    Google Scholar 

  • Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M (2003) Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol 69:5849–5854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82

    Article  CAS  PubMed  Google Scholar 

  • Tian LS, Dai CC, Zhao Y, Zhao M, Yong YH, Wang XX (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China Environ Sci 27:757–764

    CAS  Google Scholar 

  • Tranchimand S, Ertel G, Gaydou V, Gaudin C, Tron T, Iacazio G (2008) Biochemical and molecular characterization of a quercetinase from Penicillium olsonii. Biochimie 90:781–789

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Pan LP, Li HH (2010) Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol 108:1839–1849

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhang C, Cheng Z, Yao Y, Chen J (2013) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere 90:1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Zhao XY, Chen J, Du FL (2012) Potential use of peanut by-products in food processing: a review. J Food Sci Technol 49:521–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC NO. 31370507), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20133207110001), the Major Natural Science Research Programs of Jiangsu Higher Education Institutions (NO. 13KJA180003) and a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions of China. The authors express their great thanks to anonymous reviewers and editorial staff for their time and attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Chao Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HW., Zhang, W., Su, CL. et al. Biodegradation of the phytoestrogen luteolin by the endophytic fungus Phomopsis liquidambari . Biodegradation 26, 197–210 (2015). https://doi.org/10.1007/s10532-015-9727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9727-4

Keywords

Navigation