Skip to main content

Advertisement

Log in

Seeking carbon-consistency in the climate-science-to-policy interface

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The multi-faceted nature of anthropogenic climate change means that policy analysis must draw on a very wide range of disciplines. In combining information from a variety of sources, it is important to ensure consistency across the interfaces. This paper draws on some historical cases from carbon cycle studies in order to illustrate the type of issue involved. These are used as background for presenting current issues that arise in analysing changes in atmospheric carbon dioxide and the specification of emissions that cause these changes. Implications for consistent analysis of consequent climate changes are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen MR, Stott PA, Mitchell JFB, Schnur R, Detworth TL (2000) Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407:617–620

    Article  Google Scholar 

  • Alley R et al (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, Tignor M, Miller H (eds) Climate change 2007: the physical basis. Published for the IPCC by CUP, Cambridge, UK

  • Broecker WS, Peng TH, Engh R (1980) Modeling the carbon system. Radiocarbon 22:565–598

    Google Scholar 

  • Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY (2000) Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems 3:115–130

    Article  Google Scholar 

  • Denman KL, Brasseur G et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, Tignor M, Miller H (eds) Climate change 2007: the physical basis. Published for the IPCC by CUP, Cambridge, UK

  • Enting IG (1987) A modelling spectrum for carbon cycle studies. Math Comput Simul 29:75–85

    Article  Google Scholar 

  • Enting IG (1990) Ambiguities in the calibration of carbon cycle models. Inverse Probl 6:L39–L46

    Article  Google Scholar 

  • Enting IG (2000) Characterising the temporal variability of the global carbon cycle. CSIRO Atmospheric Research Technical Paper No. 40. CSIRO, Australia. http://www.cmar.csiro.au/e-print/open/enting_2000a.pdf

  • Enting IG (2002) Inverse problems in atmospheric constituent transport. CUP, Cambridge, UK

    Book  Google Scholar 

  • Enting IG (2007) Laplace transform analysis of the carbon cycle. Environ Model Softw 22:1488–1497

    Article  Google Scholar 

  • Enting IG, Lassey KR (1993) Projections of future CO2. CSIRO Division of Atmospheric Research Technical Paper No. 27. CSIRO, Australia. http://www.cmar.csiro.au/e-print/open/enting_2000e.pdf

  • Enting IG, Mansbridge JV (1991) Latitudinal distribution of sources and sinks of CO2: Results of an inversion study. Tellus 43B:156–170

    Article  Google Scholar 

  • Enting IG, Pearman GI (1987) Description of a one-dimensional carbon cycle model calibrated using techniques of constrained inversion. Tellus 39B:459–476

    Article  Google Scholar 

  • Enting IG, Trudinger CM (2002) Modelling earth system change I: validating parameterisations for attribution calculations. CSIRO Atmospheric Research Technical Paper No. 56. CSIRO, Australia. http://www.cmar.csiro.au/e-print/open/enting_2002b.pdf

  • Enting IG, Wigley TML, Heimann M (1994) Future emissions and concentrations of carbon dioxide: Key/ocean/atmosphere/land analyses. CSIRO Division of Atmospheric Research Technical Paper No. 31. CSIRO, Australia. http://www.cmar.csiro.au/e-print/open/enting_2001a.htm

  • Enting IG, Etheridge DM, Fielding MJ (2008) A perturbation analysis of the climate benefit from geosequestration of carbon dioxide. Int J Greenh Gas Control 2/3:289–296

    Article  Google Scholar 

  • Evans SN, Stark PB (2002) Inverse problems as statistics. Inverse Probl 18:R55–R97

    Article  Google Scholar 

  • Field CB, Raupach MR (eds) (2004) The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, DC

    Google Scholar 

  • Friedlingstein P, Dufresne JL, Cox PM, Rayner PJ (2003) How positive is the feedback between climate change and the carbon cycle? Tellus 55B:692–700

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Heimann M, Maier-Reimer E (1996) On the relations between the oceanic uptake of CO2 and its isotopes. Glob Biogeochem Cycles 10:89–110

    Article  Google Scholar 

  • Hesshaimer V, Heimann M, Levin I (1994) Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:210–230

    Article  Google Scholar 

  • Houghton RA (1991) Tropical deforestation and atmospheric carbon dioxide. Climatic Change 19:99–118

    Article  Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53:235–262

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Published for the IPCC by CUP, Cambridge, UK

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner GK, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) scenarios. Glob Biogeochem Cycles 15:891–907

    Article  Google Scholar 

  • Karplus WJ (1977) The spectrum of mathematical modelling and systems simulation. Math Comput Simul 19:3–10

    Article  Google Scholar 

  • Lassey KR, Enting IG, Trudinger CM (1996) The earth’s radiocarbon budget: a consistent model of the global carbon and radiocarbon cycles. Tellus 48B:487–501

    Google Scholar 

  • Morgan MG, Henrion M (1990) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. CUP, Cambridge, UK (with M. Small)

  • Oeschger H, Heimann M (1983) Uncertainties of predictions of future atmospheric CO2 concentrations. J Geophys Res 88C:1258–1262

    Article  Google Scholar 

  • Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256:74–79

    Article  Google Scholar 

  • Raupach MR, Rayner PJ, Barrett DJ, DeFries RS, Heimann M, Ojima DS, Quegan S, Schmullius CC (2005) Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Glob Chang Biol 11:378–397. doi:10.1111/j.1365-2486.2005.00917.x

    Google Scholar 

  • Ricciuto DM, Davis KJ, Keller K (2008) A Bayesian calibration of a simple carbon cycle model: the role of observations in estimating and reducing uncertainty. Glob Biogeochem Cycles 22. doi: 10.1029/2006/GB002908

  • Robertson JE, Watson AJ (1992) Thermal skin effect on the surface ocean and its implications for CO2 uptake. Nature 358:738–740

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–593

    Article  Google Scholar 

  • Schimel D, Enting IG, Heimann M, Wigley TML, Raynaud D, Alves D, Siegenthaler U (1995) CO2 and the carbon cycle. In: Houghton JT, Filho LGM, Bruce J, Lee H, Callander BA, Haites E, Harris N, Maskell K (eds) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Published for the IPCC by CUP, Cambridge, UK, pp 35–71

  • Sundquist ET (1985) Geological perspectives on carbon dioxide and the carbon cycle. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. Geophysical Monograph, vol 32. AGU, Washington, pp 5–59

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  Google Scholar 

  • Tans PP, Berry JA, Keeling RF (1993) Oceanic C13/C12 observations: A new window on oceanic CO2 uptake. Glob Biogeocheml Cycles 7:353–368

    Article  Google Scholar 

  • Tarantola A (1987) Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier, Amsterdam

    Google Scholar 

  • Trudinger CM, Enting IG, Rayner PJ, Francey RJ (2002) Kalman filter analysis of ice core data. 2 Double deconvolution of CO2 and δ13C measurements. J Geophys Res 107:doi:1029/2001JD001112

  • Wigley TML (1991) A simple inverse carbon cycle model. Glob Biogeochem Cycles 5:373–382

    Article  Google Scholar 

  • Wigley TML (1993) Balancing the carbon budget. Implications for projections of future carbon dioxide concentration changes. Tellus 45B:409–425

    Article  Google Scholar 

  • Wigley TML, Richels R, Edmonds JA (1996) Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379:240–243

    Article  Google Scholar 

Download references

Acknowledgements

The ARC Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS) is funded by the Australian Research Council. The author’s fellowship at MASCOS is funded in part by CSIRO. The work on the global carbon cycle builds on long-term collaborations with many colleagues, particulary Drs. Etheridge, Francey, Lassey, Law, Pearman, Rayner, Trudinger and Wang. The discussion of climate-to-carbon feedbacks draws on on-going work with Dr. Nathan Clisby. The development of the manuscript benefited greatly from interaction with participants at the ‘Carbon: Global Cycle to Regional Budget’ conference in Wellington NZ, from comments by other colleagues and helpful suggestions by two anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Enting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enting, I.G. Seeking carbon-consistency in the climate-science-to-policy interface. Biogeochemistry 104, 59–67 (2011). https://doi.org/10.1007/s10533-009-9351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9351-7

Keywords

Navigation