Skip to main content
Log in

Copper homeostasis gene discovery in Drosophila melanogaster

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Recent studies have shown a high level of conservation between Drosophila melanogaster and mammalian copper homeostasis mechanisms. These studies have also demonstrated the efficiency with which this species can be used to characterize novel genes, at both the cellular and whole organism level. As a versatile and inexpensive model organism, Drosophila is also particularly useful for gene discovery applications and thus has the potential to be extremely useful in identifying novel copper homeostasis genes and putative disease genes. In order to assess the suitability of Drosophila for this purpose, three screening approaches have been investigated. These include an analysis of the global transcriptional response to copper in both adult flies and an embryonic cell line using DNA microarray analysis. Two mutagenesis-based screens were also utilized. Several candidate copper homeostasis genes have been identified through this work. In addition, the results of each screen were carefully analyzed to identify any factors influencing efficiency and sensitivity. These are discussed here with the aim of maximizing the efficiency of future screens and the most suitable approaches are outlined. Building on this information, there is great potential for the further use of Drosophila for copper homeostasis gene discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20:45–54

    Article  PubMed  CAS  Google Scholar 

  • Bentley A, MacLennan B, Calvo J, Dearolf CR (2000) Targeted recovery of mutations in Drosophila. Genetics 156:1169–1173

    PubMed  CAS  Google Scholar 

  • Camakaris J, Danks DM, Ackland L et al (1980) Altered copper metabolism in cultured cells from human Menkes’ syndrome and mottled mouse mutants. Biochem Genet 18:117–131

    Article  PubMed  CAS  Google Scholar 

  • Chow KL, Hall DH, Emmons SW (1995) The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development 121:3615–3626

    PubMed  CAS  Google Scholar 

  • D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655

    Article  PubMed  CAS  Google Scholar 

  • Dascher C, Matteson J, Balch WE (1994) Syntaxin 5 regulates endoplasmic reticulum to Golgi transport. J Biol Chem 269:29363–29366

    PubMed  CAS  Google Scholar 

  • Dimova DK, Stevaux O, Frolov MV, Dyson NJ (2003) Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev 17:2308–2320

    Article  PubMed  CAS  Google Scholar 

  • Durliat M, Bonneton F, Boissonneau E, Andre M, Wegnez M (1995) Expression of metallothionein genes during the post-embryonic development of Drosophila melanogaster. Biometals 8:339–351

    Article  PubMed  CAS  Google Scholar 

  • Egli D, Selvaraj A, Yepiskoposyan H et al (2003) Knockout of ‘metal-responsive transcription factor’ MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J 22:100–108

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Roush RT (1991) Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster. Proc Natl Acad Sci USA 57:17

    CAS  Google Scholar 

  • Freedman J, Ciriolo M, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    PubMed  CAS  Google Scholar 

  • Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Gunes C, Heuchel R, Georgiev O et al (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17:2846–2854

    Article  PubMed  CAS  Google Scholar 

  • Hamza I, Faisst A, Prohaska J et al (2001) The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci USA 98:6848–6852

    Article  PubMed  CAS  Google Scholar 

  • Harris ZL, Klomp LW, Gitlin JD (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 67:972S–977S

    PubMed  CAS  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Eshoo MW et al (2002) cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem Res 27:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Kanz C, Aldebert P, Althorpe N et al (2005) The EMBL nucleotide sequence database. Nucleic Acids Res 33:D29–D33

    Article  PubMed  CAS  Google Scholar 

  • Kuo YM, Zhou B, Cosco D, Gitschier J (2001) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 98:6836–6841

    Article  PubMed  CAS  Google Scholar 

  • Levenson CW (1998) Mechanisms of copper conservation in organs. Am J Clin Nutr 67:978S–981S

    PubMed  CAS  Google Scholar 

  • Li J, Ji C, Chen J et al (2005) Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC. Biochem Biophys Res Commun 337:179–183

    Article  PubMed  CAS  Google Scholar 

  • Linder MC (1991) Nutrition and metabolism of trace elements. nutritional biochemistry and metabolism. MC Linder. Elsevier, New York, pp 215–276

    Google Scholar 

  • Margolis RL, Stine OC, McInnis MG et al (1996) cDNA cloning of a human homologue of the Caenorhabditis elegans cell fate-determining gene mab-21: expression, chromosomal localization and analysis of a highly polymorphic (CAG)n trinucleotide repeat. Hum Mol Genet 5:607–616

    Article  PubMed  CAS  Google Scholar 

  • Maroni G, Wise J, Young JE, Otto E (1987) Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics 117:739–744

    PubMed  CAS  Google Scholar 

  • Martin F, Linden T, Katschinski DM et al (2005) Copper-dependent activation of hypoxia-inducible factor (HIF)-1: implications for ceruloplasmin regulation. Blood 105:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • McCarroll SA, Murphy CT, Zou S et al (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36:197–204

    Article  PubMed  CAS  Google Scholar 

  • Norgate M, Lee E, Southon A et al (2006) Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell 17:475–484

    Article  PubMed  CAS  Google Scholar 

  • Otto E, Young JE, Maroni G (1986) Structure and expression of a tandem duplication of the Drosophila metallothionein gene. Proc Natl Acad Sci USA 83:6025–6029

    Article  PubMed  CAS  Google Scholar 

  • Petris MJ, Mercer JF, Culvenor JG et al (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–6095

    PubMed  CAS  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Sega GA, Lee WR (1970) Mutagenising Drosophila by vacuum infusion. Drosophila Inf Serv 45:179

    Google Scholar 

  • Silar P, Theodore L, Mokdad R et al (1990) Metallothionein Mto gene of Drosophila melanogaster: structure and regulation. J Mol Biol 215:217–224

    Article  PubMed  CAS  Google Scholar 

  • Smyth KA, Parker AG, Yen JL, McKenzie JA (1992) Selection of dieldrin-resistant strains of Lucilia cuprina (Diptera: Calliphoridae) after ethyl methanesulfonate mutagenesis of a susceptible strain. J Econ Entomol 85:352–358

    PubMed  CAS  Google Scholar 

  • Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383:303–309

    Article  PubMed  CAS  Google Scholar 

  • Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M (2002) Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111:687–701

    Article  PubMed  CAS  Google Scholar 

  • Suga K, Hattori H, Saito A, Akagawa K (2005) RNA interference-mediated silencing of the syntaxin 5 gene induces Golgi fragmentation but capable of transporting vesicles. FEBS Lett 579:4226–4234

    Article  PubMed  CAS  Google Scholar 

  • Tai G, Lu L, Wang TL et al (2004) Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol Biol Cell 15:4011–4022

    Article  PubMed  CAS  Google Scholar 

  • Turner JH, Gardner EJ (1960) The effect of copper and iron salts and tryptophan on head abnormalities and melanotic tumors in different stocks of Drosophila melanogaster. Genetics 45:915–924

    PubMed  CAS  Google Scholar 

  • Ungar D, Oka T, Brittle EE et al (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157:405–415

    Article  PubMed  CAS  Google Scholar 

  • Vargas EJ, Shoho AR, Linder MC (1994) Copper transport in the Nagase analbuminemic rat. Am J Physiol 267:G259–G269

    PubMed  CAS  Google Scholar 

  • Wallace B (1982) Drosophila melanogaster populations selected for resistance to NaCl and CuSo4 in both allopatry and sympatry. J Hered 73:35–42

    PubMed  CAS  Google Scholar 

  • Xu H, Brill JA, Hsien J et al (2002) Syntaxin 5 Is Required for Cytokinesis and Spermatid Differentiation in Drosophila. Dev Biol 251:294

    Google Scholar 

  • Zer H, Freedman J, Peisach J, Chevion M (1991) Inverse correlation between resistance towards copper and towards the redox-cycling compound paraquat: a study in copper-tolerant hepatocytes in tissue culture. Free Radic Biol Med 11:9–16

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Cadigan KM, Thiele DJ (2003) A Copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J Biol Chem 278:48210–48218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Donald Ingram for generous support with paraquat microarrays and Ben Ong for support with copper microarrays. We are also grateful to John Roote for supplying the deficiency mutants used in mapping the Syx5 region and to John Damiano, Louise Williams, Phoebe Heard, and Sally Coutts who assisted with the various screens. We thank Dr. Richard Burke for helpful discussions. Part of this work was supported by the Intramural Research Program of the NIH, National Institute on Aging (SZ) and grants from the International Copper Association (JC and PB), the Australian Research Council (JC), and the Australian Institute of Nuclear Science and Engineering (JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Camakaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norgate, M., Southon, A., Zou, S. et al. Copper homeostasis gene discovery in Drosophila melanogaster . Biometals 20, 683–697 (2007). https://doi.org/10.1007/s10534-006-9075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9075-2

Keywords

Navigation