Skip to main content
Log in

Conservation of copper-transporting P(IB)-type ATPase function

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Copper-transporting P(IB)-type ATPases are highly conserved, and while unicellular eukaryotes and invertebrates have only one, a gene duplication has occurred during vertebrate evolution. Copper-induced trafficking of mammalian ATP7A and ATP7B from the trans-Golgi Network towards the plasma membrane is critical for their role in copper homeostasis. In polarized epithelial cells ATP7A and ATP7B traffic towards the basolateral and apical membranes respectively. We examined the localization and function of DmATP7, the single Drosophila melanogaster orthologue, in cultured D. melanogaster and mammalian cells to explore the conservation of P(IB)-type ATPase function. Comparative genomic analysis demonstrated motifs involved in basolateral targeting and retention of ATP7A were conserved in DmATP7, whereas ATP7B targeting motifs were not. DmATP7 expression was able to correct the copper hyper-accumulation phenotype of cultured fibroblasts from a Menkes disease patient expressing a null ATP7A allele. DmATP7 was able to transport copper to the cupro-enzyme tyrosinase and under elevated copper conditions DmATP7 was able to traffic towards the plasma membrane and efflux copper, essentially phenocopying ATP7A. When expressed in polarized Madin-Darby Canine Kidney cells, DmATP7 translocated towards the basolateral membrane when exposed to elevated copper, similar to ATP7A. These results demonstrate DmATP7 is able to functionally compensate for the absence of ATP7A, with important trafficking motifs conserved in these distantly related orthologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MDCK:

Madin-Darby canine kidney

PM:

Plasma membrane

TGN:

trans-Golgi network

References

  • Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, Georgiev O, Schaffner W (2007) Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J 26:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Barnes N, Bartee MY, Braiterman L, Gupta A, Ustiyan V, Zuzel V, Kaplan JH, Hubbard AL, Lutsenko S (2009) Cell-specific trafficking suggests a new role for Renal ATP7B in the intracellular copper storage. Traffic 10(6):767–769

    Google Scholar 

  • Bartee MY, Ralle M, Lutsenko S (2009) The loop connecting metal-binding domains 3 and 4 of ATP7B is a target of a kinase-mediated phosphorylation. Biochemistry 48(24):5573–5581

    Google Scholar 

  • Braiterman L, Nyasae L, Guo Y, Bustos R, Lutsenko S, Hubbard A (2009) Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 296:G433–G444

    Article  CAS  PubMed  Google Scholar 

  • Burke R, Commons E, Camakaris J (2008) Expression and localisation of the essential copper transporter DmATP7 in Drosophila neuronal and intestinal tissues. Int J Biochem Cell Biol 40:1850–1860

    Google Scholar 

  • Camakaris J, Petris MJ, Bailey L, Shen P, Lockhart P, Glover TW, Barcroft C, Patton J, Mercer JF (1995) Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum Mol Genet 4:2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Cater MA, La Fontaine S, Shield K, Deal Y, Mercer JF (2006) ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion. Gastroenterology 130:493–506

    Article  CAS  PubMed  Google Scholar 

  • Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  PubMed  Google Scholar 

  • Cobbold C, Ponnambalam S, Francis MJ, Monaco AP (2002) Novel membrane traffic steps regulate the exocytosis of the Menkes disease ATPase. Hum Mol Genet 11:2855–2866

    Article  CAS  PubMed  Google Scholar 

  • Doolittle RF, Feng DF, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271:470–477

    Article  CAS  PubMed  Google Scholar 

  • Greenough M, Pase L, Voskoboinik I, Petris MJ, O’Brien AW, Camakaris J (2004) Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol 287:C1463–C1471

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol 289:G904–G916

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445:275–280

    Article  CAS  PubMed  Google Scholar 

  • Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702

    Article  CAS  PubMed  Google Scholar 

  • Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272:21461–21466

    Article  CAS  PubMed  Google Scholar 

  • La Fontaine S, Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 463:149–167

    Article  CAS  PubMed  Google Scholar 

  • La Fontaine S, Firth SD, Lockhart PJ, Brooks H, Parton RG, Camakaris J, Mercer JF (1998a) Functional analysis and intracellular localization of the human menkes protein (MNK) stably expressed from a cDNA construct in Chinese hamster ovary cells (CHO-K1). Hum Mol Genet 7:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • La Fontaine SL, Firth SD, Camakaris J, Englezou A, Theophilos MB, Petris MJ, Howie M, Lockhart PJ, Greenough M, Brooks H et al (1998b) Correction of the copper transport defect of Menkes patient fibroblasts by expression of the Menkes and Wilson ATPases. J Biol Chem 273:31375–31380

    Article  CAS  PubMed  Google Scholar 

  • Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, Gleeson PA (2003) GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem 278:4216–4226

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046

    Article  CAS  PubMed  Google Scholar 

  • Madsen EC, Gitlin JD (2008) Zebrafish mutants calamity and catastrophe define critical pathways of gene-nutrient interactions in developmental copper metabolism. PLoS Genet 4:e1000261

    Article  PubMed  Google Scholar 

  • Menkes JH (1999a) Menkes disease and Wilson disease: two sides of the same copper coin. Part I: Menkes disease. Eur J Paediatr Neurol 3:147–158

    Article  CAS  PubMed  Google Scholar 

  • Menkes JH (1999b) Menkes disease and Wilson disease: two sides of the same copper coin. Part II: Wilson disease. Eur J Paediatr Neurol 3:245–253

    Article  CAS  PubMed  Google Scholar 

  • Michalczyk AA, Rieger J, Allen KJ, Mercer JF, Ackland ML (2000) Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation. Biochem J 352(Pt 2):565–571

    Article  CAS  PubMed  Google Scholar 

  • Norgate M, Lee E, Southon A, Farlow A, Batterham P, Camakaris J, Burke R (2006) Essential roles in development and pigmentation for the Drosophila copper transporter DmATP7. Mol Biol Cell 17:475–484

    Article  CAS  PubMed  Google Scholar 

  • Nyasae L, Bustos R, Braiterman L, Eipper B, Hubbard A (2007) Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites. Am J Physiol Gastrointest Liver Physiol 292:G1181–G1194

    Article  CAS  PubMed  Google Scholar 

  • Pase L, Voskoboinik I, Greenough M, Camakaris J (2003) Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool. Biochem J 378:1031–1037

    Google Scholar 

  • Petris MJ, Mercer JF (1999) The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum Mol Genet 8:2107–2115

    Article  CAS  PubMed  Google Scholar 

  • Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–6095

    CAS  PubMed  Google Scholar 

  • Petris MJ, Camakaris J, Greenough M, LaFontaine S, Mercer JF (1998) A C-terminal di-leucine is required for localization of the Menkes protein in the trans-Golgi network. Hum Mol Genet 7:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Petris MJ, Strausak D, Mercer JF (2000) The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet 9:2845–2851

    Article  CAS  PubMed  Google Scholar 

  • Setty SR, Tenza D, Sviderskaya EV, Bennett DC, Raposo G, Marks MS (2008) Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454:1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Sinka R, Gillingham AK, Kondylis V, Munro S (2008) Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. J Cell Biol 183:607–615

    Article  CAS  PubMed  Google Scholar 

  • Sondergaard L (1993) Homology between the mammalian liver and the Drosophila fat body. Trends Genet 9:193

    Article  CAS  PubMed  Google Scholar 

  • Southon A, Burke R, Norgate M, Batterham P, Camakaris J (2004) Copper homoeostasis in Drosophila melanogaster S2 cells. Biochem J 383:303–309

    Article  CAS  PubMed  Google Scholar 

  • Terada K, Nakako T, Yang XL, Iida M, Aiba N, Minamiya Y, Nakai M, Sakaki T, Miura N, Sugiyama T (1998) Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J Biol Chem 273:1815–1820

    Article  CAS  PubMed  Google Scholar 

  • Ui K, Nishihara S, Sakuma M, Togashi S, Ueda R, Miyata Y, Miyake T (1994) Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol Anim 30A:209–216

    Article  CAS  PubMed  Google Scholar 

  • Vanderwerf SM, Cooper MJ, Stetsenko IV, Lutsenko S (2001) Copper specifically regulates intracellular phosphorylation of the Wilson’s disease protein, a human copper-transporting ATPase. J Biol Chem 276:36289–36294

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis NA, Gaeth AP, Pearson RB, Gabriel K, Camakaris J (2009a) The multi-layered regulation of copper translocating P-type ATPases. Biometals 22:177–190

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB et al (2009b). Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 41:2403–2412

  • Voskoboinik I, Fernando R, Veldhuis N, Hannan KM, Marmy-Conus N, Pearson RB, Camakaris J (2003) Protein kinase-dependent phosphorylation of the Menkes copper P-type ATPase. Biochem Biophys Res Commun 303:337–342

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Cadigan KM, Thiele DJ (2003) A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J Biol Chem 278:48210–48218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. Sharon La Fontaine for providing the GM2069 and Me32a cell lines, Dr. Bi-Xia Ke for the pcDNA-hTyr construct and Prof. Paul Gleeson for the GCC88 antibody. We thank Mark Greenough for constructive comments. The Australian Research Council and the Australian Institute of Nuclear Science and Engineering provided grants. The J.C Rowden White Trust provided a grant for partial funding of the Olympus FluoView 1000 confocal microscope. Adam Southon is the recipient of a PhD scholarship from the National Health and Medical Research Council of Australia and the 2009 Dawson Bursary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Camakaris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4250 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southon, A., Palstra, N., Veldhuis, N. et al. Conservation of copper-transporting P(IB)-type ATPase function. Biometals 23, 681–694 (2010). https://doi.org/10.1007/s10534-010-9332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9332-2

Keywords

Navigation