Skip to main content
Log in

In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The Menkes (ATP7A) P1B-type ATPase is a transmembrane copper-translocating protein. It contains six similar high-affinity metal-binding domains (MBDs) in the N-terminal cytoplasmic tail that are important for sensing intracellular copper and regulating ATPase function through the transfer of copper between domains. Molecular characterization of copper-binding and transfer is predominantly dependent on NMR structures derived from E. coli expression systems. A limitation of these models is the exclusion of post-translational modifications. We have previously shown that the third copper-binding domain, MBD3, uniquely contains two phosphorylated residues: Thr-327, which is phosphorylated only in the presence of elevated copper; and Ser-339, which is constitutively phosphorylated independent of copper levels. Here, using molecular dynamic simulations, we have incorporated these phosphorylated residues into a model based on the NMR structures of MBD3. Our data suggests that constitutively phosphorylated Ser-339, which is in a loop facing the copper-binding site, may facilitate the copper transfer process by exposing the CxxC copper-binding region of MBD3. Copper-induced phosphorylation of Thr327 is predicted to stabilize this change in conformation. This offers new molecular insights into how cell signaling (phosphorylation) can affect MBD structure and dynamics and how this may in turn affect copper-binding and thus copper-translocation functions of ATP7A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman DL (2006) Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAM in copper uptake. Proc Natl Acad Sci USA 103:5729–5734

    Article  PubMed  CAS  Google Scholar 

  • Anastassopoulou I, Banci L, Bertini I, Cantini F, Katsari E, Rosato A (2004) Solution structure of the Apo and copper(I)-loaded human metallochaperone HAH1. Biochemistry 43:13046–13053

    Article  PubMed  CAS  Google Scholar 

  • Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12:255–271

    Article  PubMed  CAS  Google Scholar 

  • Baker NA, Sept D, Holst MJ, McCammon JA (2001) The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers. IBM J Res Dev 45:427–438

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, DellaMalva N, Herrmann T, Rosato A, Wurthrich K (2006a) Solution structure and intermolecular interactions of the third metal-binding domain of ATP7A, the Menkes disease protein. J Biol Chem 281:29141–29147

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A, Voulgaris P (2006b) The Atx1-Ccc2 complex is a metal-mediated protein–protein interaction. Nat Chem Biol 2:367–368

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, Della-Malva N, Migliardi M, Rosato A (2007) The different intermolecular interactions of the soluble copper-binding domains of the Menkes protein, ATP7A. J Biol Chem 282:23140–23146

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, Rosenzweig AC, Yatsunyk LA (2008) Metal binding domains 3 and 4 of the Wilson disease protein: solution Structure and interaction with the copper(I) chaperone HAH1. Biochemistry 47:7423–7429

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Calderone V, Della-Malva N, Felli IC, Neri S, Pavelkova A, Rosato A (2009) Copper(I)-mediated protein–protein interactions result from suboptimal interaction surfaces. Biochem J 422:37–42

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, McGreevy KS, Rosato A (2010a) Molecular recognition in copper trafficking. Nat Prod Rep 27:695–710

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P (2010b) Affinity gradients drive copper to cellular destinations. Nature 465:645–648

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cantini F, Inagaki S, Migliardi M, Rosato A (2010c) The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A. J Biol Chem 285:2537–2544

    Article  PubMed  CAS  Google Scholar 

  • Bartee MY, Ralle M, Lutsenko S (2009) The loop connecting metal-binding domains 3 and 4 of ATP7B is a target of a kinase-mediated phosphorylation. Biochemistry 48:5573–5581

    Article  PubMed  CAS  Google Scholar 

  • Boal AK, Rosenzweig AC (2009) Structural biology of copper trafficking. Chem Rev 109:4760–4779

    Article  PubMed  CAS  Google Scholar 

  • Braiterman L, Nyasae L, Guo Y, Bustos R, Lutsenko S, Hubbard A (2009) Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 296:G433–G444

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM - A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Cater MA, Forbes J, La Fontaine S, Cox D, Mercer JFB (2004) Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites. Biochem J 380:805–813

    Article  PubMed  CAS  Google Scholar 

  • Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci USA 103:5302–5307

    Article  PubMed  CAS  Google Scholar 

  • Forbes JR, Hsi G, Cox DW (1999) Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem 274:12408–12413

    Article  PubMed  CAS  Google Scholar 

  • Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ (1998) Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Biol 5:47–54

    Article  PubMed  CAS  Google Scholar 

  • Greenough M, Pase L, Voskoboinik I, Petris MJ, O’Brien AW, Camakaris J (2004) Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol 287:C1463–C1471

    Article  PubMed  CAS  Google Scholar 

  • Groban ES, Narayanan A, Jacobson MP (2006) Conformational changes in protein loops and helices induced by post-translational phosphorylation. PLoS Comput Biol 2:238–250

    Article  CAS  Google Scholar 

  • Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol 289:G904–G916

    Article  PubMed  CAS  Google Scholar 

  • Holt BTO, Merz KM (2007) Insights into Cu(I) exchange in HAH1 using quantum mechanical and molecular simulations. Biochemistry 46:8816–8826

    Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Huster D, Lutsenko S (2003) The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson’s Disease protein. J Biol Chem 278:32212–32218

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JH, Lutsenko S (2009) Copper transport in mammalian cells: special care for a metal with special needs. J Biol Chem 284:25461–25465

    Article  PubMed  CAS  Google Scholar 

  • Lamb AL, Wernimont AK, Pufahl RA, O’Halloran TV, Rosenzweig AC (2000) Crystal structure of the second domain of the human copper chaperone for superoxide dismutase. Biochemistry 39:1589–1595

    Article  PubMed  CAS  Google Scholar 

  • LeShane ES, Shinde U, Walker JM, Barry AN, Blackburn NJ, Ralle M, Lutsenko S (2010) Interactions between copper-binding sites determine the redox status and conformation of the regulatory N-terminal domain of ATP7B. J Biol Chem 285:6327–6336

    Article  PubMed  CAS  Google Scholar 

  • Morin I, Gudin S, Mintz E, Cuillel M (2009) Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo. FEBS J 276:4483–4495

    Article  PubMed  CAS  Google Scholar 

  • Narayanan A, Jacobson MP (2009) Computational studies of protein regulation by post-translational phosphorylation. Curr Opin Struct Biol 19:156–163

    Article  PubMed  CAS  Google Scholar 

  • Petris MJ, Voskoboinik I, Cater M, Smith K, Kim BE, Llanos RM, Strausak D, Camakaris J, Mercer JFB (2002) Copper-regulated trafficking of the Menkes disease copper ATPase is associated with formation of a phosphorylated catalytic intermediate. J Biol Chem 277:46736–46742

    Article  PubMed  CAS  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P (2009) Conformational dynamics of metal-binding domains in Wilson disease protein: molecular insights into selective copper transfer. Biochemistry 48:5849–5863

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Granillo A, Crespo A, Wittung-Stafshede P (2010) Interdomain interactions modulate collective dynamics of the metal-binding domains in the Wilson disease protein. J Phys Chem B 114:1836–1848

    Article  PubMed  CAS  Google Scholar 

  • Singleton WCJ, McInnes KT, Cater MA, Winnall WR, McKirdy R, Yu Y, Taylor PE, Ke BX, Richardson DR, Mercer JFB, La Fontaine S (2010) Role of Glutaredoxin1 and Glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B. J Biol Chem 285:27111–27121

    Article  PubMed  CAS  Google Scholar 

  • Strausak D, La Fontaine S, Hill J, Firth SD, Lockhart PJ, Mercer JFB (1999) The role of GMXCXXC metal binding sites in the copper-induced redistribution of the Menkes protein. J Biol Chem 274:11170–11177

    Article  PubMed  CAS  Google Scholar 

  • Strausak D, Howie MK, Firth SD, Schlicksupp A, Pipkorn R, Multhaup G, Mercer JFB (2003) Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein. J Biol Chem 278:20821–20827

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis N, Gaeth A, Pearson R, Gabriel K, Camakaris J (2009a) The multi-layered regulation of copper translocating P-type ATPases. Biometals 22:177–190

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis NA, Valova VA, Gaeth AP, Palstra N, Hannan KM, Michell BJ, Kelly LE, Jennings I, Kemp BE, Pearson RB, Robinson PJ, Camakaris J (2009b) Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase. Int J Biochem Cell Biol 41:2403–2412

    Article  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Mar J, Strausak D, Camakaris J (2001) The regulation of catalytic activity of the Menkes copper-translocating P-type ATPase—role of high affinity copper- binding sites. J Biol Chem 276:28620–28627

    Article  PubMed  CAS  Google Scholar 

  • Voskoboinik I, Mar J, Camakaris J (2003) Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochem Biophys Res Commun 301:488–494

    Article  PubMed  CAS  Google Scholar 

  • Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766–771

    Article  PubMed  CAS  Google Scholar 

  • Yatsunyk LA, Rosenzweig AC (2007) Cu(I) binding and transfer by the N-terminus of the Wilson disease protein. J Biol Chem 282:8622–8631

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by a NHMRC project grant (NV, JC). R.B.P is supported by a NHMRC Senior Research Fellowship. RCJD acknowledges the CR Roper Fellowship fund for salary support. The authors are also grateful to the Victorian Life Science Computational Initiative (VLSCI), which dedicated computational time to this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Veldhuis or J. Camakaris.

Additional information

N. A. Veldhuis and M. J. Kuiper contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veldhuis, N.A., Kuiper, M.J., Dobson, R.C.J. et al. In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding. Biometals 24, 477–487 (2011). https://doi.org/10.1007/s10534-011-9410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9410-0

Keywords

Navigation