Skip to main content

Advertisement

Log in

Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, micro-imprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 μm, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 μm, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • P. Bajaj, D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, R. Bashir, Biomed. Microdevices 9, 787 (2007)

    Article  Google Scholar 

  • C.A. Curcio, K.A. Allen, J. Comp. Neurol. 300, 5 (1990)

    Article  Google Scholar 

  • N.C. Das, M. Taysing-Lara, K.A. Olver, F. Kiamilev, J.P. Prineas, J.T. Olesberg, E.J. Koerperick, L.M. Murray, T.F. Boggess, IEEE Trans. Electron. Packag. Manuf. 32, 9 (2009)

    Article  Google Scholar 

  • K. Ganesan, D.J. Garrett, A. Ahnood, M.N. Shivdasani, W. Tong, A.M. Turnley, K. Fox, H. Meffin, S. Prawer, Biomaterials 35, 908 (2014)

    Article  Google Scholar 

  • D.J. Garrett, K. Ganesan, A. Stacey, K. Fox, H. Meffin, S. Prawer, J. Neural Eng. 9, 016002 (2012)

    Article  Google Scholar 

  • R.A. Green, N.H. Lovell, G.G. Wallace, L.A. Poole-Warren, Biomaterials 29, 3393 (2008)

    Article  Google Scholar 

  • T. Guenther, C.W.D. Dodds, N.H. Lovell, G.J. Suaning in 2011 Annu. Int. Conf. Ieee Eng. Med. Biol. Soc. 6717–6720 (2011)

  • T. Guenther, N.H. Lovell, G.J. Suaning, Expert. Rev. Med. Dev. 9, 33 (2012)

    Article  Google Scholar 

  • A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O’Brien, Biomaterials 33, 5812 (2012)

    Article  Google Scholar 

  • H. Hämmerle, K. Kobuch, K. Kohler, W. Nisch, H. Sachs, M. Stelzle, Biomaterials 23, 797 (2002)

    Article  Google Scholar 

  • J. John, L. Zimmermann, P. D. Moor, C. V. Hoof, Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 531, 202 (2004)

  • Y.S. Kim, K.Y. Suh, H.H. Lee, Appl. Phys. Lett. 79, 2285 (2001)

    Article  Google Scholar 

  • M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004)

    Article  Google Scholar 

  • W. Lin, Y.C. Lee, IEEE Trans. Adv. Packag. 22, 592 (1999)

    Article  Google Scholar 

  • N.L. Opie, L.N. Ayton, N.V. Apollo, K. Ganesan, R.H. Guymer, C.D. Luu, Artif. Organs 38, E82 (2014)

    Article  Google Scholar 

  • P.J.Love, A.W. Hoffman, D.J. Gulbransen, M.P. Murray, K.J. Ando, N.J. Therrien, J.P. Rosbeck, R.S. Holcombe, 134–143 (2004).

  • J.D. Plessis, W.J. Pugh, A. Judefeind, J. Hadgraft, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 15, 63 (2002)

    Google Scholar 

  • A. Santos, M.S. Humayun, E. de Juan Jr. et al., Arch. Ophthalmol. 115, 511 (1997)

    Article  Google Scholar 

  • C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A.M. Litke, E.J. Chichilnisky, J. Neurosci. 28, 4446 (2008)

    Article  Google Scholar 

  • W. Tong, K. Fox, K. Ganesan, A.M. Turnley, O. Shimoni, P.A. Tran, A. Lohrmann, T. McFarlane, A. Ahnood, D.J. Garrett, H. Meffin, N.M. O’Brien-Simpson, E.C. Reynolds, S. Prawer, Mater. Sci. Eng. C 43, 135 (2014)

    Article  Google Scholar 

  • N. Tran, S. Bai, J. Yang, H. Chun, O. Kavehei, Y. Yang, V. Muktamath, D. Ng, H. Meffin, M. Halpern, E. Skafidas, IEEE J. Solid-State Circuits 49, 751 (2014)

    Article  Google Scholar 

  • Z. Zhang, C.P. Wong, IEEE Trans. Adv. Packag. 27, 515 (2004)

    Article  Google Scholar 

  • D. Zhou, and E. Greenbaum, Implantable neural prostheses 2: techniques and engineering approaches (Springer Science & Business Media, 2010)

Download references

Acknowledgments

This research was supported by the ARC through its Special Research Initiative (SRI) in Bionic Vision Science and Technology grant to Bionic Vision Australia (BVA). This work was performed in part at the NSW Node of the Australian National Fabrication Facility. NVA is supported by an MMI-CSIRO PhD scholarship.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahnood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahnood, A., Escudie, M.C., Cicione, R. et al. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses. Biomed Microdevices 17, 50 (2015). https://doi.org/10.1007/s10544-015-9952-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9952-y

Keywords

Navigation