Skip to main content
Log in

Wireless induction coils embedded in diamond for power transfer in medical implants

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Wireless power and data transfer to medical implants is a research area where improvements in current state-of-the-art technologies are needed owing to the continuing efforts for miniaturization. At present, lithographical patterning of evaporated metals is widely used for miniature coil fabrication. This method produces coils that are limited to low micron or nanometer thicknesses leading to high impedance values and thus limiting their potential quality. In the present work we describe a novel technique, whereby trenches were milled into a diamond substrate and filled with silver active braze alloy, enabling the manufacture of small, high cross-section, low impedance microcoils capable of transferring up to 10 mW of power up to a distance of 6 mm. As a substitute for a metallic braze line used for hermetic sealing, a continuous metal loop when placed parallel and close to the coil surface reduced power transfer efficiency by 43%, but not significantly, when placed perpendicular to the microcoil surface. Encapsulation of the coil by growth of a further layer of diamond reduced the quality factor by an average of 38%, which can be largely avoided by prior oxygen plasma treatment. Furthermore, an accelerated ageing test after encapsulation showed that these coils are long lasting. Our results thus collectively highlight the feasibility of fabricating a high-cross section, biocompatible and long lasting miniaturized microcoil that could be used in either a neural recording or neuromuscular stimulation device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A. Ahnood, M.C. Escudie, R. Cicione, C.D. Abeyrathne, K. Ganesan, K.E. Fox, D.J. Garrett, A. Stacey, N.V. Apollo, S.G. Lichter, C.D.L. Thomas, N. Tran, H. Meffin, S. Prawer, Biomed. Microdevices 17(3), 1–11 (2015)

    Article  Google Scholar 

  • M. Amato, F. Dalena, C. Coviello, M. De Vittorio, S. Petroni, Microelectron. Eng. 111, 143–148 (2013)

    Article  Google Scholar 

  • C. Baj-Rossi, E.G. Kilinc, S.S. Ghoreishizadeh, D. Casarino, T.R. Jost, C. Dehollain, F. Grassi, L. Pastorino, G. De Micheli, S. Carrara, Biomedical Circuits and Systems Conference (BioCAS), 2013 IEEE, pp. 166–169 (2013)

  • A. Bongrain, A. Bendali, G.L. Sorgues, L.O. Rousseau, B. Yvert, E. Scorsone, P. Bergonzo, S. Cau, Diamond-based technology dedicated to micro electrode arrays for neuronal prostheses. Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2011 Symposium on (IEEE, 2011), pp. 378–384

  • A.N. Broers, Philosophical transactions of the Royal Society of London a: Mathematical. Phys. Eng. Sci. 353(1703), 291–311 (1995)

    Article  Google Scholar 

  • J.P. Carmo, J.H. Correia, Microelectron. J. 40, 1746–1754 (2009)

    Article  Google Scholar 

  • J. Cavuoto, The market for neurotechnology: 2012–2016. Neurotech Reports, 1–345 (2011)

  • P.-J. Chen, D.C. Rodger, S. Saati, M.S. Humayun, Y.C. Tai, J. Microelectromech. Syst. 17(6), 1342–1351 (2008)

    Article  Google Scholar 

  • G.M. Clark, The multi-channel cochlear implant: Multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit. Hearing Research 322, 4–13 (2015)

  • P.E. Donaldson, The encapsulation of microelectronic devices for long-term surgical implantation. IEEE Trans. Biomed. Eng. 4, 281–285 (1976)

    Article  Google Scholar 

  • N. de. N. Donaldson, Med. Biol. Eng. Comput. 30(1), 63–68 (1992)

  • K. Ganesan, Invest. Ophthalmol Vis. Sci. 55(13), 1806 (2014)

    Google Scholar 

  • K. Ganesan, D. Garrett, A. Ahnood, M. Shivdasani, W. Tong, A. Turnley, K. Fox, H. Meffin, S. Prawer, Biomaterials 35(3), 908–915 (2014)

    Article  Google Scholar 

  • D.J. Garrett, K. Ganesan, A. Stacey, K. Fox, H. Meffin, S. Prawer, J. Neural Eng. 9, 1 (2012)

    Article  Google Scholar 

  • A.E. Hadjinicolaou, R.T. Leung, D.J. Garrett, K. Ganesan, K. Fox, D.A.X. Nayagam, M.N. Shivdasani, H. Meffin, M.R. Ibbotson, S. Prawer, B.J. O'Brien, Biomaterials 33(24), 5812–5820 (2012)

    Article  Google Scholar 

  • U.-M. Jow, M. Ghovanloo, IEEE Trans. Biomed. Circuits Syst. 1(3), 193–202 (2007)

    Article  Google Scholar 

  • R. Kadefors, E. Kaiser, I. Petersén, IEEE trans. Biomed. Eng. 3, 177–183 (1969)

    Article  Google Scholar 

  • S. Kirsten, J. Uhlemann, M. Braunschweig, K.J. Wolter, Electronics Technology (ISSE), 35th International Spring Seminar on, (IEEE, 2012) pp. 123–127

  • W.H. Ko, S.P. Liang, C.D. Fung, Med. Biol. Eng. Comput. 15(6), 634–640 (1977)

    Article  Google Scholar 

  • S.Y.L.A.S.C. Lee, IEEE Trans. Circuits Syst. I Reg. Papers 52(12), 2526–2538 (2005)

    Article  Google Scholar 

  • S.W. Lee, K.S. Min, J. Jeong, J. Kim, S.J. Kim, IEEE Trans. Biomed. Eng. 58(8), 2255–2263 (2011)

    Article  Google Scholar 

  • W. Li, B. Kabius, O. Auciello, Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (IEEE, 2010) pp. 6237–6242

  • W. Li, D.C. Rodger, A. Pinto, E. Meng, J.D. Weiland, M.S. Humayun, Y.-C. Tai, Sensors Actuators A Phys. 166(2), 193–200 (2011)

    Article  Google Scholar 

  • S.G. Lichter, M.C. Escudié, A.D. Stacey, K. Ganesan, K. Fox, A. Ahnood, N.V. Apollo, D.C. Kua, A.Z. Lee, C. McGowan, Biomaterials 53, 464–474 (2015a)

    Article  Google Scholar 

  • S.G. Lichter, M.C. Escudie, A.D. Stacey, K. Ganesan, K. Fox, A. Ahnood, N.V. Apollo, D.C. Kua, A.Z. Lee, C. McGowan, A.L. Saunders, O. Burns, D.A.X. Nayagam, R.A. Williams, D.J. Garrett, H. Meffin, S. Prawer, Biomaterials 53, 464–474 (2015b)

    Article  Google Scholar 

  • D. Martelli, S.T. Yao, J. Mancera, M.J. McKinley, R.M. McAllen, Am. J. Physiol. Reg. I 307(9), R1085–R1091 (2014)

    Google Scholar 

  • M.I. Maturana, N.V. Apollo, A.E. Hadjinicolaou, D.J. Garrett, S.L. Cloherty, T. Kameneva, D.B. Grayden, M.R. Ibbotson, H. Meffin, PLoS Comput. Biol. 12(4), 1–26 (2016)

    Article  Google Scholar 

  • K.L. Montgomery, A.J. Yeh, J.S. Ho, V. Tsao, S.M. Iyer, L. Grosenick, E.A. Ferenczi, Y. Tanabe, K. Deisseroth, S.L. Delp, Nat. methods 12(10), 969–974 (2015)

    Article  Google Scholar 

  • D.A.X. Nayagam, I. Durmo, C. McGowan, R.A. Williams, R.K. Shepherd, J. Vis. Exp., 96, 1–9 (2015)

  • C. Neagu, H. Jansen, A. Smith, J. Gardeniers, M. Elwenspoek, Sensors Actuators A Phys. 62(1), 599–611 (1997)

    Article  Google Scholar 

  • T. Oxley, N. Opie, S. John, G. Rind, S. Ronayne, T. Wheeler, J. Judy, A. McDonald, A. Dornom, T.J.H. Lovell, C. Steward, D. Garrett, B. Moffat, E. Lui, N. Yassi, B.C.V. Campbell, Y. Wong, K. Fox, E. Nurse, I. Bennett, S. Bauquier, K. Liyanage, N.R. van der Nagel, P. Perucca, A. Ahnood, K. Gill, B. Yan, L. Churilov, C. French, P. Desmond, M. Horne, L. Kiers, S. Prawer, S. Davis, A. Burkitt, P. Mitchell, D. Grayden, C. May, T. O'Brien, Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat. Biotechnol. 34(3), 320–327 (2016)

    Article  Google Scholar 

  • K. Qian, K. Malachowski, P. Fiorini, D. Velenis, M.O. de Beeck, C. Van Hoof, Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, (2011) pp. 7674–7677

  • Sharman A. M., Olga Kirmi and Philip Anslow. Seminars in Ultrasound, CT, and MRI, 30 (6), 452–464 (2009)

  • R.K. Shepherd, M.N. Shivdasani, D.A. Nayagam, C.E. Williams, P.J. Blamey, Trends Biotechnol 31(10), 562–571 (2013)

    Article  Google Scholar 

  • M. Shivdasani, Invest. Ophthalmol. Vis. Sci. 54(15), 1029 (2013)

    Google Scholar 

  • S. Smith, T.B. Tang, J.G. Terry, J.T.M. Stevenson, B.W. Flynn, H.M. Reekie, A.F. Murray, A.M. Gundlach, D. Renshaw, B. Dhillon, A. Ohtori, Y. Inoue, A.J. Walton, IET Nanobiotechnol. 1(5), 80–86 (2007)

    Article  Google Scholar 

  • K.J. Tracey, Nature 420(6917), 853–859 (2002)

    Article  Google Scholar 

  • T.J.S. Van Mulder, M. de Koeijer, H. Theeten, D. Willems, P. Van Damme, M. Demolder, G. De Meyer, K.C.L. Beyers, V. Vankerckhoven, Vaccine 35, 1810–1815 (2017)

    Article  Google Scholar 

  • S. Vyas, J. Meyerle, Philippe Burlina. Comput. Biol. Med. 57, 173–181 (2015)

    Article  Google Scholar 

  • W. Wattanapanitch, R. Sarpeshkar, IEEE Trans. Biomed. Circuits Syst. 5(6), 592–602 (2011)

    Article  Google Scholar 

  • R.O.A.K. Wise, IEEE J. Solid State Circuits 40(12), 2796–2804 (2005)

    Article  Google Scholar 

  • M. Zhu, D. Chung, J. Electron. Mater. 23(6), 541–549 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Rodney Millard his support of this work during the electrical characterization of the microcoils and Owen Burns for helping conduct the ageing tests. This research and KS were supported by an Australian Research Council (ARC) DECRA grant DE130100922. DJG is supported by the National Health and Medical Research Council (NHMRC) of Australia, grant GNT1101717. MNS is supported by the National Health and Medical Research Council (NHMRC) of Australia, grant GNT1063093. The Bionics Institute acknowledges the support received from the Victorian Government through its Operational Infrastructure Program for this work. Imaging was conducted at the Melbourne Advanced Microscopy Facility housed within Bio21 at The University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Garrett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikder, M.K.U., Fallon, J., Shivdasani, M.N. et al. Wireless induction coils embedded in diamond for power transfer in medical implants. Biomed Microdevices 19, 79 (2017). https://doi.org/10.1007/s10544-017-0220-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0220-1

Keywords

Navigation