Skip to main content
Log in

Structure Inclination Angles in the Convective Atmospheric Surface Layer

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Two-point correlations of the fluctuating streamwise velocity are examined in the atmospheric surface layer over the salt flats of Utah’s western desert, and corresponding structure inclination angles are obtained for neutral, stable and unstable conditions. The neutral surface-layer results supplement evidence for the invariance of the inclination angle given in Marusic and Heuer (Phys Rev Lett 99:114504, 2007). In an extension of those results it is found that the inclination angle changes drastically under different stability conditions in the surface layer, varying systematically with the Monin–Obukhov stability parameter in the unstable regime. The variation is parametrized and subsequently can be used to improve existing near-wall models in the large-eddy simulation of the atmospheric surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422: 1–54

    Article  Google Scholar 

  • Albertson JD, Parlange MB (1999) Surface length scales and shear stress: Implications for land atmosphere interaction over complex terrain. Water Resour Res 35(7):2121–2132

    Article  Google Scholar 

  • Boppe RS, Neu WL (1995) Quasi-coherent structures in the marine atmospheric surface layer. J Geophys Res 100(C10): 20635–20648

    Article  Google Scholar 

  • Boppe RS, Neu WL, Shuai H (1999) Large-scale motions in the marine atmospheric surface layer. Boundary-Layer Meteorol 92(2): 165–183

    Article  Google Scholar 

  • Bou-Zeid E, Meneveau C, Parlange MB (2005) A scale-dependent Lagrangian dynamic model for the large-eddy simulation of complex turbulent flows. Phys Fluids 17: 025105

    Article  Google Scholar 

  • Brasseur J, Wei T (2010) Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys Fluids 22: 021303

    Article  Google Scholar 

  • Brown GL, Thomas ASW (1977) Large structure in a turbulent boundary layer. Phys Fluids 20(10): 243–252

    Article  Google Scholar 

  • Carper MA, Porté-Agel F (2004) The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J Turbul 5:Art. No. 40

  • Chamorro L, Porté-Agel F (2010) Wind-tunnel study of surface boundary conditions for large-eddy simulation of turbulent flow past a rough-to-smooth surface transition. J Turbul 11(1): 1–17

    Article  Google Scholar 

  • Chauhan K, Hutchins N, Marusic I, Monty J (2010) Two-point correlation statistics in atmospheric surface layers. In: Proceedings of 17th Australasian fluid mech conference paper no. 141

  • Christensen KT (2001) Experimental investigation of acceleration and velocity fields in turbulent channel flow. PhD thesis, University of Illinois, USA

  • Christensen KT, Adrian RJ (2001) Statistical evidence of hairpin vortex packets in wall turbulence. J Fluid Mech 431: 433–443

    Article  Google Scholar 

  • Ganapathisubramani B, Longmire EK, Marusic I (2003) Characteristics of vortex packets in turbulent boundary layers. J Fluid Mech 478: 35–46

    Article  Google Scholar 

  • Ganapathisubramani B, Hutchins N, Hambleton WT, Longmire EK, Marusic I (2005) Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J Fluid Mech 524: 57–80

    Article  Google Scholar 

  • Grötzbach G (1987) Direct numerical and large eddy simulations of turbulent channel flows. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol 6. Gulf, West Orange, NJ, pp 1337–1391

  • Head MR, Bandyopadhyay P (1981) New aspects of turbulent boundary-layer structure. J Fluid Mech 107: 297–337

    Article  Google Scholar 

  • Hommema S, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol 106: 147–170

    Article  Google Scholar 

  • Hutchins N, Marusic I (2007) Evidence of very long meandering streamwise structures in the logarithmic region of turbulent boundary layers. J Fluid Mech 579: 1–28

    Article  Google Scholar 

  • Hutchins N, Chauhan K, Marusic I, Monty J, Klewicki J (2012) Towards reconciling the structure of boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol 145: 273–306. doi:10.1007/s10546-012-9735-4

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp

  • Kovasznay LSG, Kibens V, Blackwelder RF (1970) Large-scale motion in the intermittent region of a turbulent boundary layer. J Fluid Mech 41: 283–326

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140: 243–262

    Article  Google Scholar 

  • Marusic I, Heuer W (2007) Reynolds number invariance of the structure inclination angle in wall turbulence. Phys Rev Lett 99: 114504

    Article  Google Scholar 

  • Marusic I, Hutchins N (2008) Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow Turbul Combust 81: 115–130

    Article  Google Scholar 

  • Marusic I, Kunkel G, Porté-Agel F (2001) Experimental study of wall boundary conditions for large-eddy simulation. J Fluid Mech 446: 309–320

    Google Scholar 

  • Marusic I, Mathis R, Hutchins N (2010) Predictive model for wall-bounded turbulent flow. Science 9: 193–196

    Article  Google Scholar 

  • Marusic I, Mathis R, Hutchins N (2011) A wall-shear stress predictive model. In: Journal of Physics conference series—Proceedings of the 13th European turbulence conference, Warsaw, Poland 318:012003

  • Mathis R, Hutchins N, Marusic I (2009) Large-scale amplitude modulation of the small-scale structures of turbulent boundary layers. J Fluid Mech 628: 311–337

    Article  Google Scholar 

  • Moeng CH (1984) A large-eddy simulation for the study of planetary boundary layer turbulence. J Atmos Sci 41(13): 2052–2062

    Article  Google Scholar 

  • Morris SC, Stolpa SR, Slaboch PE, Klewicki JC (2007) Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J Fluid Mech 580: 319–338

    Article  Google Scholar 

  • Phong-Anant D, Antonia RA, Chambers AJ, Rajagopalan S (1980) Features of the organized motion in the atmospheric surface layer. J Geophys Res 85(C1): 424–432

    Article  Google Scholar 

  • Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulations. Annu Rev Fluid Mech 34: 349–374

    Article  Google Scholar 

  • Piomelli U, Ferziger J, Moin P, Kim J (1989) New approximate boundary conditions for large eddy simulations of wall bounded flows. Phys Fluids 1: 1061–1068

    Article  Google Scholar 

  • Porté-Agel F, Meneveau C, Parlange MB (2000) A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415: 261–284

    Article  Google Scholar 

  • Porté-Agel F, Parlange MB, Meneveau C, Eichinger WE (2001) A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58: 2673–2698

    Article  Google Scholar 

  • Schmidt H, Schumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200: 511–562

    Article  Google Scholar 

  • Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys 18:376–404

    Google Scholar 

  • Stoll R, Porté-Agel F (2006) Effect of roughness on surface boundary conditions for large-eddy simulation. Boundary-Layer Meteorol 118: 169–187

    Article  Google Scholar 

  • Stoll R, Porté-Agel F (2008) Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol 126: 1–28

    Article  Google Scholar 

  • Sullivan PB, Horst TW, Lenschow DH, Moeng CH, Weil JC (2003) Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482: 101–139

    Article  Google Scholar 

  • Venugopal V, Porté-Agel F, Foufoula-Georgiou E, Carper M (2003) Multiscale interactions between surface shear stress and velocity in turbulent boundary layers. J Geophys Res 108: 4613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Chauhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, K., Hutchins, N., Monty, J. et al. Structure Inclination Angles in the Convective Atmospheric Surface Layer. Boundary-Layer Meteorol 147, 41–50 (2013). https://doi.org/10.1007/s10546-012-9777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9777-7

Keywords

Navigation