Skip to main content
Log in

The Effect of Slice Orientation on Auditory fMRI at the Level of the Brainstem

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Although auditory information is processed in several subcortical nuclei, most fMRI studies focus solely on the auditory cortex and do not take brainstem responses into account. One common difficulty in obtaining clear functional brainstem recordings is due to heartbeat related motion, manifested in the rostro-caudal and in the ventro-dorsal directions in the contraction phase of the heart. The aim of this study was to investigate the effect of slice orientation on auditory functional magnetic resonance imagining (fMRI) measurements with respect to the pattern of brainstem oscillation. Fourteen healthy volunteers listened monaurally to modulated pink noise. Blood oxygenation level dependent (BOLD) contrast was performed with an echo-planar image (EPI) sequence using a 3T MRI system. Three different slice orientations were compared: approximately parallel, at 45°, and orthogonal to the brainstem. The standard deviation of the residuals, the effect size, the median t-values, and the number of activated voxels were calculated to quantify variability in activation between orientations. The data for the inferior colliculi indicated that a slice orientation with a 45° angle to the brainstem yielded the lowest sensitivity to motion (reflected in the standard deviation of the residuals). By contrast, the results did not suggest differences between the three imaging planes on the scanning of the auditory cortex. Findings indicate that the 45° slice orientation is the optimum orientation for accurate measurement at the upper brainstem level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. SPM99 (www.fil.ion.ucl.ac.uk/spm) was used because of the implemented MarsBaR toolbox (http://marsbar.sourceforge.ne) for defining the regions of interest.

References

  • Backes WH, van Dijk P (2002) Simultaneous sampling of event-related BOLD responses in auditory cortex and brainstem. Magn Reson Med 47(1):90–96

    Article  CAS  PubMed  Google Scholar 

  • Bazwinsky I, Hilbig H, Bidmon HJ, Rübsamen R (2003) Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol 456(3):292–303

    Article  CAS  PubMed  Google Scholar 

  • Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42(6):1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Disbrow EA, Slutsky DA, Roberts TPL, Krubitzer LA (2000) Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. PNAS 97(17):9718–9723

    Article  CAS  PubMed  Google Scholar 

  • Duvernoy HM (1995) The human brain stem and cerebellum: surface, structure, vascularization, three dimensional sectional anatomy, and MRI. Springer-Verlag Wien, New York

    Google Scholar 

  • Enzmann DR, Pelc NJ (1991) Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178(2):467–474

    CAS  PubMed  Google Scholar 

  • Enzmann DR, Pelc NJ (1992) Brain motion: measurement with phase-contrast MR imaging. Radiology 185(3):653–660

    CAS  PubMed  Google Scholar 

  • Feinberg DA, Mark AS (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 163(3):793–799

    CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes A, Worsley KJ, Poline J-B, Frith CD (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210

    Article  Google Scholar 

  • Gebarski SS, Tucci DL, Telian SA (1993) The cochlear nuclear complex: MR location and abnormalities. AJNR Am J Neuroradiol 14(6):1311–1318

    CAS  PubMed  Google Scholar 

  • Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F (1992) Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology 34(5):370–380

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR, Kiang NY, Fullerton BC, Weisskoff RM (1998) Imaging subcortical auditory activity in humans. Hum Brain Mapp 6(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW (1999) “Sparse” temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223

    Article  CAS  PubMed  Google Scholar 

  • Harms MP, Melcher JR (2002) Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J Neurophysiol 88(3):1433–1450

    PubMed  Google Scholar 

  • Hawley ML, Melcher JR, Fullerton BC (2005) Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei. Hear Res 204(1–2):101–110

    Article  PubMed  Google Scholar 

  • Heßelmann V, Wedekind C, Kugel H, Schulte O, Krug B, Klug N, Lackner KJ (2001) Functional magnetic resonance imaging of human pontine auditory pathway. Hear Res 158(1–2):160–164

    Article  PubMed  Google Scholar 

  • Kovacs S, Peeters R, Smits M, De Ridder D, Van Hecke P, Sunaert S (2006) Activation of cortical and subcortical auditory structures at 3 T by means of a functional magnetic resonance imaging paradigm suitable for clinical use. Invest Radiol 41(2):87–96

    Article  PubMed  Google Scholar 

  • Krings T, Erberich SG, Roessler F, Reul J, Thron A (1999) MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol 20(11):1907–1914

    CAS  PubMed  Google Scholar 

  • Landau WM, Freygang WH, Rowland LP, Sokoloff L, Kety SS (1955) The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans Am Neurol Assoc 80:125–129

    Google Scholar 

  • Langers DR, Backes WH, van Dijk P (2003) Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. Neuroimage 20(1):265–275

    Article  PubMed  Google Scholar 

  • Langers DR, van Dijk P, Backes WH (2005) Lateralization, connectivity and plasticity in the human central auditory system. Neuroimage 28(2):490–499

    Article  PubMed  Google Scholar 

  • Lanting CP, de Kleine E, Bartels H, van Dijk P (2008) Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol 128(4):415–421

    Article  CAS  PubMed  Google Scholar 

  • Maier SE, Hardy CJ, Jolesz FA (1994) Brain and cerebrospinal fluid motion: real-time quantification with M-mode MR imaging. Radiology 193(2):477–483

    CAS  PubMed  Google Scholar 

  • Marks MP, Pelc NJ, Ross MR, Enzmann DR (1992) Determination of cerebral blood flow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformations. Radiology 182(2):467–476

    CAS  PubMed  Google Scholar 

  • Melcher JR, Sigalovsky IS, Guinan JJ Jr, Levine RA (2000) Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83(2):1058–1072

    CAS  PubMed  Google Scholar 

  • Muresan L, Renken R, Roerdink JB, Duifhuis H (2005) Automated correction of spin-history related motion artefacts in fMRI: simulated and phantom data. IEEE Trans Biomed Eng 52(8):1450–1460

    Article  PubMed  Google Scholar 

  • Ono M, Ono M, Rhoton AL, Barry M (1984) Microsurgical anatomy of the region of the tentorial incisura. J Neurosurg 60(2):365–399

    Article  CAS  PubMed  Google Scholar 

  • Poncelet BP, Wedeen VJ, Weisskoff RM, Cohen MS (1992) Brain parenchyma motion: measurement with cine echo-planar MR imaging. Radiology 185(3):645–651

    CAS  PubMed  Google Scholar 

  • Schönwiesner M, Krumbholz K, Rübsamen R, Fink GR, von Cramon DY (2007) Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cereb Cortex 17(2):492–499

    Article  PubMed  Google Scholar 

  • Sigalovsky IS, Melcher JR (2006) Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear Res 215(1–2):67–76

    Article  PubMed  Google Scholar 

  • van Gelderen P, Wu CWH, de Zwart JA, Cohen L, Hallett M, Duyn JH (2005) Resolution and reproducibility of BOLD and perfusion functional MRI at 3.0 Tesla. Magn Reson Med 54:569–576

    Article  PubMed  Google Scholar 

  • Vlaardingerbroeck MT, den Boer JA (1996) Magnetic resonance imaging. Springer, Berlin

    Google Scholar 

  • Yetkin FZ, Roland PS, Mendelsohn DB, Purdy PD (2004) Functional magnetic resonance imaging of activation in subcortical auditory pathway. Laryngoscope 114:96–101

    Article  PubMed  Google Scholar 

  • Zeller K, Rahner-Welsch S, Kuschinsky W (1997) Distribution of Glut1 glucose transporters in different brain structures compared to glucose utilization and capillary density of adult rat brains. J Cereb Blood Flow Metab 17(2):204–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript is based on the doctoral dissertation of the author, under general supervision of Prof. Ir. Hendrikus Duifhuis, Department of Biomedical Engineering, Neuroimaging Center, University of Groningen, with additional assistance by Remco Renken, Ph.D., Esther Wiersinga-Post, Ph.D., and Hans Hoogduin, Ph.D., Neuroimaging Center, University of Groningen. The author wishes to thank Anita Kuiper from Neuroimaging Center for assistance in data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia M. Slabu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slabu, L.M. The Effect of Slice Orientation on Auditory fMRI at the Level of the Brainstem. Brain Topogr 23, 301–310 (2010). https://doi.org/10.1007/s10548-010-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0141-2

Keywords

Navigation