Skip to main content

Advertisement

Log in

Frequent somatic mutations of GATA3 in non-BRCA1/BRCA2 familial breast tumors, but not in BRCA1-, BRCA2- or sporadic breast tumors

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Heterozygous somatic mutations of the transcription factor, GATA-3, have recently been reported in approximately 5% breast of tumors unselected for family history. We sequenced the GATA-3 gene in 55 breast tumors from women with familial breast cancer, and found seven heterozygous somatic mutations, all in non-BRCA1/2 cases in which the frequency was 22%. In contrast, we found mutations of GATA-3 in only 4% of 81 sporadic tumors analysed. It is possible that GATA3 mutations occur earlier in the evolution of BRCAx tumors, compared to BRCA1, BRCA2 or sporadic tumors, and are therefore easier to detect by direct sequencing in the presence of some stromal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Labastie MC, Bories D, Chabret C, Gregoire JM, Chretien S, Romeo PH (1994) Structure and expression of the human GATA3 gene. Genomics 21(1):1–6. doi:10.1006/geno.1994.1217

    Article  CAS  PubMed  Google Scholar 

  2. Yang Z, Gu L, Romeo PH, Bories D, Motohashi H, Yamamoto M, Engel JD (1994) Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 14(3):2201–2212

    CAS  PubMed  Google Scholar 

  3. Simon MC (1995) Gotta have GATA. Nat Genet 11(1):9–11. doi:10.1038/ng0995-9

    Article  CAS  PubMed  Google Scholar 

  4. Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11(1):40–44. doi:10.1038/ng0995-40

    Article  CAS  PubMed  Google Scholar 

  5. Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI, de Caprona D, Fritzsch B (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429(4):615–630. 10.1002/1096-9861(20010122)429:4<;615::AID-CNE8>;3.0.CO;2-Fdoi:

  6. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9(2):201–209. doi:10.1038/ncb1530

    Article  CAS  PubMed  Google Scholar 

  7. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z (2006) GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127(5):1041–1055. doi:10.1016/j.cell.2006.09.048

    Article  CAS  PubMed  Google Scholar 

  8. Tlsty TD (2007) Luminal cells GATA have it. Nat Cell Biol 9(2):135–136. doi:10.1038/ncb0207-135

    Article  CAS  PubMed  Google Scholar 

  9. Tong Q, Hotamisligil GS (2007) Developmental biology: cell fate in the mammary gland. Nature 445(7129):724–726. doi:10.1038/445724a

    Article  CAS  PubMed  Google Scholar 

  10. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  CAS  PubMed  Google Scholar 

  11. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423. doi:10.1073/pnas.0932692100

    Article  CAS  PubMed  Google Scholar 

  12. Voduc D, Cheang M, Nielsen T (2008) GATA-3 expression in breast cancer has a strong association with estrogen receptor but lacks independent prognostic value. Cancer Epidemiol Biomarkers Prev 17(2):365–373. doi:10.1158/1055-9965.EPI-06-1090

    Article  CAS  PubMed  Google Scholar 

  13. Garcia-Closas M, Troester MA, Qi Y, Langerod A, Yeager M, Lissowska J, Brinton L, Welch R, Peplonska B, Gerhard DS et al (2007) Common genetic variation in GATA-binding protein 3 and differential susceptibility to breast cancer by estrogen receptor alpha tumor status. Cancer Epidemiol Biomarkers Prev 16(11):2269–2275. doi:10.1158/1055-9965.EPI-07-0449

    Article  CAS  PubMed  Google Scholar 

  14. Johnatty SE, Couch FJ, Fredericksen Z, Tarrell R, Spurdle AB, Beesley J, Chen X (2008) kConFab Investigators, AOCS Group, The Swedish BRCA1 and BRCA2 Study Collaborators, Gschwantler-Kaulich D, Singer CF, Fuerhauser C, Fink-Retter A, Domchek S.M, Nathanson KL, Pankratz VS, Lindor NM, Godwin AK, Caligo MA, Hopper J, Southey MC, Giles GG, Justenhoven C, Brauch H, Hamann U, Ko Y-D, Heikkinen T, Aaltonen K, Aittomäki K, Blomqvist C, Nevanlinna H, Hall P, Czene K, Liu J, Peock S, Cook M, Platte R, Evans D.G, Lalloo F, Eeles R, Pichert G, Eccles D, Davidson R, Cole T, Cook J, Douglas F, Chu C, Hodgson S, Paterson J, Hogervorst FBL, Rookus MA, Seynaeve C, Wijnen J, Vreeswijk M, Ligtenberg M, van der Luijt RB, van Os TAM, Gille HJP, Blok MJ, HEBON Issacs C, Humphreys MK, McGuffog L, Healey S, Sinilnikova O, Antoniou AC, Easton DF, Georgia Chenevix-Trench, Breast Cancer Association Consortium, Consortium of Investigators of Modifiers of BRCA1/2: No evidence that GATA3 rs570613 SNP modifies breast cancer risk. Breast Cancer Res Treat. doi:10.1007/s10549-008-0257-1

  15. Chanock SJ, Burdett L, Yeager M, Llaca V, Langerod A, Presswalla S, Kaaresen R, Strausberg RL, Gerhard DS, Kristensen V et al (2007) Somatic sequence alterations in twenty-one genes selected by expression profile analysis of breast carcinomas. Breast Cancer Res 9(1):R5. doi:10.1186/bcr1637

    Article  PubMed  Google Scholar 

  16. Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG et al (2004) Mutation of GATA3 in human breast tumors. Oncogene 23(46):7669–7678. doi:10.1038/sj.onc.1207966

    Article  CAS  PubMed  Google Scholar 

  17. Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, Evans GM, Fereday S, Haan E, Gattas M et al (2006) Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res 8(1):R12. doi:10.1186/bcr1377

    Article  PubMed  Google Scholar 

  18. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215. doi:10.1093/nar/16.3.1215

    Article  CAS  PubMed  Google Scholar 

  19. Levi S, Urbano-Ispizua A, Gill R, Thomas DM, Gilbertson J, Foster C, Marshall CJ (1991) Multiple K-ras codon 12 mutations in cholangiocarcinomas demonstrated with a sensitive polymerase chain reaction technique. Cancer Res 51(13):3497–3502

    CAS  PubMed  Google Scholar 

  20. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093. doi:10.1038/nature05887

    Article  CAS  PubMed  Google Scholar 

  21. Chenevix-Trench G, Spurdle AB, Gatei M, Kelly H, Marsh A, Chen X, Donn K, Cummings M, Nyholt D, Jenkins MA et al (2002) Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 94(3):205–215

    PubMed  Google Scholar 

  22. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38(8):873–875. doi:10.1038/ng1837

    Article  CAS  PubMed  Google Scholar 

  23. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241. doi:10.1038/ng1902

    Article  CAS  PubMed  Google Scholar 

  24. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167. doi:10.1038/ng1959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (funded by NHMRC grants 145684, 288704 and 454508) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research Council (NHMRC) and by the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. We would also like to thank Anna Marsh for technical assistance. GCT is a Senior Principal Research Fellow, and IGC is a Senior Research Fellow, of the NHMRC.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Georgia Chenevix-Trench.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, J.M., Choong, D.Y.H., Thompson, E.R. et al. Frequent somatic mutations of GATA3 in non-BRCA1/BRCA2 familial breast tumors, but not in BRCA1-, BRCA2- or sporadic breast tumors. Breast Cancer Res Treat 119, 491–496 (2010). https://doi.org/10.1007/s10549-008-0269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0269-x

Keywords

Navigation