Skip to main content

Advertisement

Log in

Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Ductal carcinoma in situ (DCIS) is a non-obligate precursor to invasive ductal carcinoma (IDC). Annotation of the genetic differences between the two lesions may assist in the identification of genes that promote the invasive phenotype. Synchronous DCIS and IDC cells were microdissected from FFPE tissue and analysed by molecular inversion probe (MIP) copy number arrays. Matched IDC and DCIS showed highly similar copy number profiles (average of 83% of the genome shared) indicating a common clonal origin although there is evidence that the DCIS continues to evolve in parallel with the co-existing IDC. Four chromosomal regions of loss (3q, 6q, 8p and 11q) and four regions of gain (5q, 16p, 19q and 20) were recurrently affected in IDC but not in DCIS. CCND1 and MYC showed increased amplitude of gain in IDC. One region of loss (17p11.2) was specific to DCIS. IDC-specific regions include genes with previous links to breast cancer progression and potential therapeutic targets such as AXL, SPHK1 and PLAUR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leonard GD, Swain SM (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96(12):906–920

    Article  PubMed  Google Scholar 

  2. Reis-Filho JS, Lakhani SR (2003) The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res 5(6):313–319. doi:10.1186/bcr650

    Article  PubMed  CAS  Google Scholar 

  3. Kerlikowske K, Molinaro AM, Gauthier ML, Berman HK, Waldman F, Bennington J, Sanchez H, Jimenez C, Stewart K, Chew K, Ljung BM, Tlsty TD (2010) Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst 102(9):627–637. doi:10.1093/jnci/djq101

    Article  PubMed  CAS  Google Scholar 

  4. Gauthier ML, Berman HK, Miller C, Kozakeiwicz K, Chew K, Moore D, Rabban J, Chen YY, Kerlikowske K, Tlsty TD (2007) Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12(5):479–491. doi:10.1016/j.ccr.2007.10.017

    Article  PubMed  CAS  Google Scholar 

  5. Farabegoli F, Champeme MH, Bieche I, Santini D, Ceccarelli C, Derenzini M, Lidereau R (2002) Genetic pathways in the evolution of breast ductal carcinoma in situ. J Pathol 196(3):280–286

    Article  PubMed  Google Scholar 

  6. Maitra A, Wistuba II, Washington C, Virmani AK, Ashfaq R, Milchgrub S, Gazdar AF, Minna JD (2001) High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol 159(1):119–130

    Article  PubMed  CAS  Google Scholar 

  7. Zhuang Z, Merino MJ, Chuaqui R, Liotta LA, Emmert-Buck MR (1995) Identical allelic loss on chromosome 11q13 in microdissected in situ and invasive human breast cancer. Cancer Res 55(3):467–471

    PubMed  CAS  Google Scholar 

  8. Castro NP, Osorio CA, Torres C, Bastos EP, Mourao-Neto M, Soares FA, Brentani HP, Carraro DM (2008) Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Breast Cancer Res 10(5):R87. doi:10.1186/bcr2157

    Article  PubMed  Google Scholar 

  9. Dalgin GS, Alexe G, Scanfeld D, Tamayo P, Mesirov JP, Ganesan S, DeLisi C, Bhanot G (2007) Portraits of breast cancer progression. BMC Bioinformatics 8:291. doi:10.1186/1471-2105-8-291

    Article  PubMed  Google Scholar 

  10. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979. doi:10.1073/pnas.0931261100

    Article  PubMed  CAS  Google Scholar 

  11. Waldman FM, DeVries S, Chew KL, Moore DH 2nd, Kerlikowske K, Ljung BM (2000) Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 92(4):313–320

    Article  PubMed  CAS  Google Scholar 

  12. Gao Y, Niu Y, Wang X, Wei L, Lu S (2009) Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med 87(2):145–152. doi:10.1007/s00109-008-0408-1

    Article  PubMed  CAS  Google Scholar 

  13. O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90(9):697–703

    Article  PubMed  Google Scholar 

  14. Xu S, Wei B, Zhang H, Qing M, Bu H (2008) Evidence of chromosomal alterations in pure usual ductal hyperplasia as a breast carcinoma precursor. Oncol Rep 19(6):1469–1475

    PubMed  Google Scholar 

  15. Robanus-Maandag EC, Bosch CA, Kristel PM, Hart AA, Faneyte IF, Nederlof PM, Peterse JL, van de Vijver MJ (2003) Association of C-MYC amplification with progression from the in situ to the invasive stage in C-MYC-amplified breast carcinomas. J Pathol 201(1):75–82. doi:10.1002/path.1385

    Article  PubMed  CAS  Google Scholar 

  16. Wang Y, Carlton VE, Karlin-Neumann G, Sapolsky R, Zhang L, Moorhead M, Wang ZC, Richardson AL, Warren R, Walther A, Bondy M, Sahin A, Krahe R, Tuna M, Thompson PA, Spellman PT, Gray JW, Mills GB, Faham M (2009) High quality copy number and genotype data from FFPE samples using molecular inversion probe (MIP) microarrays. BMC Med Genomics 2:8. doi:10.1186/1755-8794-2-8

    Article  PubMed  Google Scholar 

  17. Wu L, Patten N, Yamashiro CT, Chui B (2002) Extraction and amplification of DNA from formalin-fixed, paraffin-embedded tissues. Appl Immunohistochem Mol Morphol 10(3):269–274

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Moorhead M, Karlin-Neumann G, Wang NJ, Ireland J, Lin S, Chen C, Heiser LM, Chin K, Esserman L, Gray JW, Spellman PT, Faham M (2007) Analysis of molecular inversion probe performance for allele copy number determination. Genome Biol 8(11):R246. doi:10.1186/gb-2007-8-11-r246

    Article  PubMed  Google Scholar 

  19. Gorringe KL, George J, Anglesio MS, Ramakrishna M, Etemadmoghadam D, Cowin P, Sridhar A, Williams LH, Boyle SE, Yanaihara N, Okamoto A, Urashima M, Smyth GK, Campbell IG, Bowtell DD (2010) Copy number analysis identifies novel interactions between genomic loci in ovarian cancer. PLoS One 5(9). doi:10.1371/journal.pone.0011408

  20. Marioni JC, Thorne NP, Valsesia A, Fitzgerald T, Redon R, Fiegler H, Andrews TD, Stranger BE, Lynch AG, Dermitzakis ET, Carter NP, Tavare S, Hurles ME (2007) Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. Genome Biol 8(10):R228. doi:10.1186/gb-2007-8-10-r228

    Article  PubMed  Google Scholar 

  21. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/j.ccr.2006.10.009

    Article  PubMed  CAS  Google Scholar 

  22. Chin SF, Teschendorff AE, Marioni JC, Wang Y, Barbosa-Morais NL, Thorne NP, Costa JL, Pinder SE, van de Wiel MA, Green AR, Ellis IO, Porter PL, Tavare S, Brenton JD, Ylstra B, Caldas C (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8(10):R215. doi:10.1186/gb-2007-8-10-r215

    Article  PubMed  Google Scholar 

  23. Haverty PM, Fridlyand J, Li L, Getz G, Beroukhim R, Lohr S, Wu TD, Cavet G, Zhang Z, Chant J (2008) High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 47(6):530–542. doi:10.1002/gcc.20558

    Article  PubMed  CAS  Google Scholar 

  24. Jonsson G, Staaf J, Vallon-Christersson J, Ringner M, Holm K, Hegardt C, Gunnarsson H, Fagerholm R, Strand C, Agnarsson BA, Kilpivaara O, Luts L, Heikkila P, Aittomaki K, Blomqvist C, Loman N, Malmstrom P, Olsson H, Johannsson OT, Arason A, Nevanlinna H, Barkardottir RB, Borg A (2010) Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12(3):R42. doi:10.1186/bcr2596

    Article  PubMed  Google Scholar 

  25. Natrajan R, Lambros MB, Rodriguez-Pinilla SM, Moreno-Bueno G, Tan DS, Marchio C, Vatcheva R, Rayter S, Mahler-Araujo B, Fulford LG, Hungermann D, Mackay A, Grigoriadis A, Fenwick K, Tamber N, Hardisson D, Tutt A, Palacios J, Lord CJ, Buerger H, Ashworth A, Reis-Filho JS (2009) Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 15(8):2711–2722. doi:10.1158/1078-0432.CCR-08-1878

    Article  PubMed  CAS  Google Scholar 

  26. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, Geyer FC, van Kouwenhove M, Kreike B, Mackay A, Ashworth A, van de Vijver MJ, Reis-Filho JS (2010) Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29(14):2013–2023. doi:10.1038/onc.2009.489

    Article  PubMed  CAS  Google Scholar 

  27. Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere S, Kageyama S, Fukuoka J, Nagata T, Tsukada K, Dunn BK, Wakefield LM, Lee MP (2009) Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res 69(18):7357–7365. doi:10.1158/0008-5472.CAN-09-0064

    Article  PubMed  CAS  Google Scholar 

  28. Thompson PA, Brewster AM, Kim-Anh D, Baladandayuthapani V, Broom BM, Edgerton ME, Hahn KM, Murray JL, Sahin A, Tsavachidis S, Wang Y, Zhang L, Hortobagyi GN, Mills GB, Bondy ML (2011) Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One 6(8):e23543

    Article  PubMed  CAS  Google Scholar 

  29. Muggerud AA, Hallett M, Johnsen H, Kleivi K, Zhou W, Tahmasebpoor S, Amini RM, Botling J, Borresen-Dale AL, Sorlie T, Warnberg F (2010) Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 4(4):357–368. doi:10.1016/j.molonc.2010.06.007

    Article  PubMed  CAS  Google Scholar 

  30. Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, Kurek R, Neubauer HJ (2006) Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66(10):5278–5286. doi:10.1158/0008-5472.CAN-05-4610

    Article  PubMed  CAS  Google Scholar 

  31. Balleine RL, Webster LR, Davis S, Salisbury EL, Palazzo JP, Schwartz GF, Cornfield DB, Walker RL, Byth K, Clarke CL, Meltzer PS (2008) Molecular grading of ductal carcinoma in situ of the breast. Clin Cancer Res 14(24):8244–8252. doi:10.1158/1078-0432.CCR-08-0939

    Article  PubMed  CAS  Google Scholar 

  32. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, Reyal F, Radvanyi F, Salmon R, Thiery JP, Sastre-Garau X, Sigal-Zafrani B, Fourquet A, Delattre O (2008) Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res 14(7):1956–1965. doi:10.1158/1078-0432.CCR-07-1465

    Article  PubMed  CAS  Google Scholar 

  33. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, Brennan C, Polyak K (2006) Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66(8):4065–4078. doi:10.1158/0008-5472.CAN-05-4083

    Article  PubMed  CAS  Google Scholar 

  34. Burkhardt L, Grob TJ, Hermann I, Burandt E, Choschzick M, Janicke F, Muller V, Bokemeyer C, Simon R, Sauter G, Wilczak W, Lebeau A (2010) Gene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res Treat 123(3):757–765. doi:10.1007/s10549-009-0675-8

    Article  PubMed  CAS  Google Scholar 

  35. Tyndall JD, Kelso MJ, Clingan P, Ranson M (2008) Peptides and small molecules targeting the plasminogen activation system: towards prophylactic anti-metastasis drugs for breast cancer. Recent Pat Anticancer Drug Discov 3(1):1–13

    Article  PubMed  CAS  Google Scholar 

  36. Antoon JW, Meacham WD, Bratton MR, Slaughter EM, Rhodes LV, Ashe HB, Wiese TE, Burow ME, Beckman BS (2011) Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer. J Mol Endocrinol 46(3):205–216. doi:10.1530/JME-10-0116

    Article  PubMed  CAS  Google Scholar 

  37. Ruckhaberle E, Rody A, Engels K, Gaetje R, von Minckwitz G, Schiffmann S, Grosch S, Geisslinger G, Holtrich U, Karn T, Kaufmann M (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112(1):41–52. doi:10.1007/s10549-007-9836-9

    Article  PubMed  Google Scholar 

  38. Gjerdrum C, Tiron C, Hoiby T, Stefansson I, Haugen H, Sandal T, Collett K, Li S, McCormack E, Gjertsen BT, Micklem DR, Akslen LA, Glackin C, Lorens JB (2010) Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci USA 107(3):1124–1129. doi:10.1073/pnas.0909333107

    Article  PubMed  CAS  Google Scholar 

  39. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905. doi:10.1038/nature08822

    Article  PubMed  CAS  Google Scholar 

  40. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39(Database issue):D945–D950. doi:10.1093/nar/gkq929

    Article  PubMed  Google Scholar 

  41. Farrell C, Crimm H, Meeh P, Croshaw R, Barbar T, Vandersteenhoven JJ, Butler W, Buckhaults P (2008) Somatic mutations to CSMD1 in colorectal adenocarcinomas. Cancer Biol Ther 7(4):609–613

    Article  PubMed  CAS  Google Scholar 

  42. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, Kamada S, Saito K, Iiizumi M, Liu W, Ericsson J, Watabe K (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68(4):1003–1011. doi:10.1158/0008-5472.CAN-07-2489

    Article  PubMed  CAS  Google Scholar 

  43. Dupont Jensen J, Laenkholm AV, Knoop A, Ewertz M, Bandaru R, Liu W, Hackl W, Barrett JC, Gardner H (2011) PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17(4):667–677. doi:10.1158/1078-0432.CCR-10-1133

    Article  PubMed  CAS  Google Scholar 

  44. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M, Marchio C, Reis-Filho JS (2010) Breast cancer precursors revisited: molecular features and progression pathways. Histopathology 57(2):171–192. doi:10.1111/j.1365-2559.2010.03568.x

    Article  PubMed  Google Scholar 

  45. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, Huryk H, Mueller C, Adamo L, Deng J, Petricoin EF, Pastore L, Zaman S, Menezes G, Mize J, Johal J, Edmiston K, Liotta LA (2010) Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLoS One 5(4):e10240. doi:10.1371/journal.pone.0010240

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to dedicate this publication to the memory of Clint Johnson, who carried out many of the experiments as part of his PhD candidature. He was a fine scholar, talented scientist-in-training, and is sadly missed by his colleagues. His PhD candidature was supported by an Australian Postgraduate Award. This study was also supported by the Victorian Breast Cancer Research Consortium and the Australian National Health and Medical Research Council (NHMRC, No. 509050).

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Bruce Mann or Ian G. Campbell.

Additional information

Clint E. Johnson, Kylie L. Gorringe and Ella R. Thompson contributed equally to this study.

G. Bruce Mann and Ian G. Campbell contributed equally to this study.

Clint E. Johnson—Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 List of samples with clinical characteristics (XLS 27 kb)

Supplementary Table 2 Peak regions of CNA in DCIS (XLS 44 kb)

Supplementary Table 3 DCIS and IDC-specific regions (XLS 36 kb)

10549_2011_1835_MOESM4_ESM.pdf

Supplementary Fig. 1 Examples of regions where the IDC showed increased amplitude of gain compared to the DCIS, which refined the minimal region of IDC-specific change for the chromosome Supplementary Fig. 2 Frequency plots for chromosomes 11 and 8 showing the combination of IDC-specific gain with increased amplitude gain in the IDC to define new regions on each chromosome that identified known oncogenes. Also shown are copy number traces for 3 cases where we had obtained parallel Agilent 180K aCGH data (y-axis = log2 CN from -1 to 1, line is average of 10 probes for cases 780 and 650 and 20 probes for case 695), in each case confirming the increase in CN observed by MIP array (y-axis = total CN, line is average of 20 probes). DCIS – red, IDC – blue. Supplementary Fig. 3 Top: frequency plot of chr 17 DCIS-specific losses. Middle: heatmap of gains (red) and losses (blue) of 5 samples with DCIS-specific deletions (pink box, minimal overlap). Lower: “B” allele plots i.e. SNP alleles with the minimum intensity. DCIS (red) and IDC (green). Dashed line, LOH threshold. The first four cases show DCIS LOH only; case 416 has LOH of both, but IDC shows copy number neutral LOH. (PDF 2479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C.E., Gorringe, K.L., Thompson, E.R. et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat 133, 889–898 (2012). https://doi.org/10.1007/s10549-011-1835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1835-1

Keywords

Navigation