Skip to main content

Advertisement

Log in

Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Objective To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. Background Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women’s health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. Methods The largest clinical and cadaveric anatomical study (n = 315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. Results Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87–91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. Conclusion We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BIMA:

Bilateral internal mammary artery

CABG:

Coronary artery bypass graft

CTA:

Computer tomography angiogram

DIEP:

Deep inferior epigastric artery perforator

DSEA:

Deep superior epigastric artery

ICS:

Intercostal space

IMA:

Internal mammary artery

IMAP:

Internal mammary artery perforator

IMV:

Internal mammary vein

LAD:

Left-anterior descending artery

LIMA:

Left-internal mammary artery

OECD:

Organisation for Economic Co-operation and Development

MRI:

Magnetic resonance imaging

RIMA:

Right-internal mammary artery

References

  1. Garvey PB, Buchel EW, Pockaj BA, Casey WJ 3rd, Gray RJ, Hernández JL, Samson TD (2006) DIEP and pedicled TRAM flaps: a comparison of outcomes. Plast Reconstr Surg 117(6):1711–1719

    Article  PubMed  CAS  Google Scholar 

  2. Tachi M, Yamada A (2005) Choice of flaps for breast reconstruction. Int J Clin Oncol 10(5):289–297

    Article  PubMed  Google Scholar 

  3. Selber JC, Nelson J, Fosnot J et al (2010) A prospective study comparing the functional impact of SIEA, DIEP, and muscle-sparing free TRAM flaps on the abdominal wall: part I. unilateral reconstruction. Plast Reconstr Surg 126(4):1142–1153

    Article  PubMed  CAS  Google Scholar 

  4. Nahabedian MY, Momen B, Galdino G, Manson PN (2002) Breast reconstruction with the free TRAM or DIEP flap: patient selection, choice of flap, and outcome. Plast Reconstr Surg 110:466–475

    Article  PubMed  Google Scholar 

  5. Kaplan JL, Allen RJ (2000) Cost-based comparison between perforator flaps and TRAM flaps for breast reconstruction. Plast Reconstr Surg 105:943–948

    Article  PubMed  CAS  Google Scholar 

  6. Kroll SS, Sharma S, Koutz C, Langstein HN et al (2001) Postoperative morphine requirements of free TRAM and DIEP flaps. Plast Reconstr Surg 107:338–341

    Article  PubMed  CAS  Google Scholar 

  7. Atisha D, Alderman AK (2009) A systematic review of abdominal wall function following abdominal flaps for postmastectomy breast reconstruction. Ann Plast Surg 63(2):222–230

    Article  PubMed  CAS  Google Scholar 

  8. Yap YL, Lim J, Yap-Asedillo C et al (2010) The deep inferior epigastric perforator flap for breast reconstruction: is this the ideal flap for Asian women? Ann Acad Med Singapore 39(9):680–686

    PubMed  Google Scholar 

  9. Nahabedian MY (2004) The internal mammary artery and vein as recipient vessels for microvascular breast reconstruction: are we burning a future bridge? Ann Plast Surg 53(4):311–316

    Article  PubMed  Google Scholar 

  10. Apostolides JG, Magarakis M, Rosson GD (2011) Preserving the internal mammary artery: end-to-side microvascular arterial anastomosis for DIEP and SIEA flap breast reconstruction. Plast Reconstr Surg 128(4):225e–232e

    Article  PubMed  CAS  Google Scholar 

  11. Hemphill AF, de Jesus RA, McElhaney N, Ferrari JP (2008) End-to-side anastomosis to the internal mammary artery in free flap breast reconstruction: preserving the internal mammary artery for coronary artery bypass grafting. Plast Reconstr Surg 122(5):149e–150e

    Article  PubMed  Google Scholar 

  12. Munhoz AM, Ishida LH, Montag E et al (2004) Perforator flap breast reconstruction using internal mammary perforator branches as a recipient site: an anatomical and clinical analysis. Plast Reconstr Surg 114:62–68

    Article  PubMed  Google Scholar 

  13. Follmar KE, Prucz RB, Manahan MA, Magarakis M, Rad AN, Rosson GD (2011) Internal mammary intercostal perforators instead of the true internal mammary vessels as the recipient vessels for breast reconstruction. Plast Reconstr Surg 127(1):34–40

    Article  PubMed  CAS  Google Scholar 

  14. Hamdi M, Blondeel P, Van Landuyt K, Monstrey S (2004) Algorithm in choosing recipient vessels for perforator free flap in breast reconstruction: the role of the internal mammary perforators. Br J Plast Surg 57(3):258–265

    Article  PubMed  Google Scholar 

  15. Greer-Bayramoglu RJ, Chu MW, Fortin AJ (2011) Feasibility of internal mammary vessel use in breast reconstruction versus coronary artery bypass surgery: an anatomic, cadaveric evaluation. Plast Reconstr Surg 127(5):1783–1789

    Article  PubMed  CAS  Google Scholar 

  16. World Health Organization (2008) The global burden of disease: 2004 update. WHO, Geneva

    Google Scholar 

  17. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  PubMed  CAS  Google Scholar 

  18. Organization for Economic Co-operation and Development (2010) OECD health data 2010: statistics and indicators for 30 countries. Paris, France: Organization for Economic Cooperation and Development. http://www.ecosante.org/index2.php?base=OCDE&langh=ENG&langs=ENG&sessionid. Accessed 25 Jan 2011

  19. Desantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61(4):212–236

    Article  Google Scholar 

  20. Van Nes JG, Seynaeve C, Jones S et al (2010) Variations in locoregional therapy in postmenopausal patients with early breast cancer treated in different countries. Br J Surg 97:671–679

    Article  PubMed  Google Scholar 

  21. American Society of Plastic Surgeons (2010) National clearinghouse of plastic surgery statistics, 2010 report of the 2009 statistics. Arlington Heights, IL: American Society of Plastic Surgeons. http://www.plasticsurgery.org/Documents/Media/statistics/2009-US-cosmeticreconstructiveplasticsurgeryminimally-invasive-statistics.pdf. Accessed 26 Jan 2011

  22. Damen TH, Wei W, Mureau MA et al (2011) Medium-term cost analysis of breast reconstructions in a single Dutch centre: a comparison of implants, implants preceded by tissue expansion, LD transpositions and DIEP flaps. J Plast Reconstr Aesthet Surg 64(8):1043–1053

    Article  PubMed  CAS  Google Scholar 

  23. Marchac A, Bosc R, Benjoar MD, Hivelin M, Lepage C, Lantieri L (2011) A cost analysis of DIEP flap in breast reconstruction. Ann Chir Plast Esthet 56(4):275–279

    Article  PubMed  CAS  Google Scholar 

  24. Stucky CC, Gray RJ, Wasif N, Dueck AC, Pockaj BA (2010) Increase in contralateral prophylactic mastectomy: echoes of a bygone era? Surgical trends for unilateral breast cancer. Ann Surg Oncol 17(3):330–337

    Article  PubMed  Google Scholar 

  25. Han E, Johnson N, Glissmeyer M, Wagie T, Carey B, DelaMelena T, Nelson J (2011) Increasing incidence of bilateral mastectomies: the patient perspective. Am J Surg 201(5):615–618

    Article  PubMed  Google Scholar 

  26. Mislowsky A, Domchek S, Stroede C, Bergey MR, Sonnad SS, Wu L, Tchou J (2011) Breast cancer surgery trend changes since the introduction of BRCA1/2 mutation screening: a retrospective cohort analysis of 158 mutation carriers treated at a single institution. Ann Surg Oncol 18(3):745–751

    Article  PubMed  Google Scholar 

  27. Tuttle TM, Jarosek S, Habermann EB, Arrington A, Abraham A, Morris TJ, Virnig BA (2009) Increasing rates of contralateral prophylactic mastectomy among patients with ductal carcinoma in situ. J Clin Oncol 27(9):1362–1367

    Article  PubMed  Google Scholar 

  28. Yao K, Stewart AK, Winchester DJ, Winchester DP (2010) Trends in contralateral prophylactic mastectomy for unilateral cancer: a report from the National Cancer Data Base, 1998–2007. Ann Surg Oncol 17(10):2554–2562

    Article  PubMed  Google Scholar 

  29. Arrington AK, Jarosek SL, Virnig BA, Habermann EB, Tuttle TM (2009) Patient and surgeon characteristics associated with increased use of contralateral prophylactic mastectomy in patients with breast cancer. Ann Surg Oncol 16(10):2697–2704

    Article  PubMed  Google Scholar 

  30. Saint-Cyr M, Youssef A, Bae HW, Robb GL, Chang DW (2007) Changing trends in recipient vessel selection for microvascular autologous breast reconstruction: an analysis of 1483 consecutive cases. Plast Reconstr Surg 119(7):1993–2000

    Article  PubMed  CAS  Google Scholar 

  31. Haywood RM, Raurell A, Perks AG, Sassoon EM, Logan AM, Phillips J (2003) Autologous free tissue breast reconstruction using the internal mammary perforators as recipient vessels. Br J Plast Surg 56(7):689–691

    Article  PubMed  CAS  Google Scholar 

  32. Saint-Cyr M, Chang DW, Robb GL, Chevray PM (2007) Internal mammary perforator recipient vessels for breast reconstruction using free TRAM, DIEP, and SIEA flaps. Plast Reconstr Surg 120(7):1769–1773

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt M, Aszmann OC, Beck H, Frey M (2010) The anatomic basis of the internal mammary artery perforator flap: a cadaver study. J Plast Reconstr Aesthet Surg 63(2):191–196

    Article  PubMed  Google Scholar 

  34. Hannan EL, Wu C, Walford G et al (2008) Drug-eluting stents vs. coronary-artery bypass grafting in multivessel coronary disease. New Eng J Med 358(4):2641–2644

    Article  Google Scholar 

  35. Movahed MR, Hashemzadeh M, Khoynezhad A, Jamal M, Ramaraj R (2010) Sex and ethnic group specific nationwide trends in the use of coronary artery bypass grafting in the United States. J Thorac Cardiovasc Surg 139:1545–1547

    Article  PubMed  Google Scholar 

  36. Kitamura S (2011) Physiological and metabolic effects of grafts in coronary artery bypass surgery. Circ J 75(4):766–772

    Article  PubMed  Google Scholar 

  37. Schmitto JD, Rajab TK, Cohn LH (2010) Prevalence and variability of internal mammary graft use in contemporary multivessel coronary artery bypass graft. Curr Opin Cardiol 25(6):609–612

    Article  PubMed  Google Scholar 

  38. Buxton BF, Newcomb AE, Moten S, Seevanayagam S, Gordon I (2009) Choice of conduits for coronary artery bypass grafting: craft or science? Eur J Cardiothorac Surg 35(4):658–670

    Article  PubMed  Google Scholar 

  39. Frischknecht K, Greuter H, Weisshaupt C et al (2006) Different vascular smooth muscle cell apoptosis in the human internal mammary artery and the saphenous vein. J Vasc Res 43:338–346

    Article  PubMed  CAS  Google Scholar 

  40. Zulli A, Hare DL, Horrigan M, Buxton BF (2003) The resistance of the IMA to atherosclerosis might be associated with its higher eNOS, ACE and ET-A receptor immunoreactivity. Arterioscler Thromb Vasc Biol 23(7):1308

    Article  PubMed  CAS  Google Scholar 

  41. Kurlansky P (2010) Thirty-year experience with bilateral internal thoracic artery grafting: where have we been and where are we going? World J Surg 34(4):646–651

    Article  PubMed  Google Scholar 

  42. Walpoth BH, Schmid M, Schwab A et al (2008) Vascular adaptation of the internal thoracic artery graft early and late after bypass surgery. J Thorac Cardiovasc Surg 136(4):876–883

    Article  PubMed  Google Scholar 

  43. Tarr FI, Sasvári M, Tarr M, Rácz R (2005) Evidence of nitric oxide produced by the internal mammary artery graft in venous drainage of the recipient coronary artery. Ann Thorac Surg 80(5):1728–1731

    Article  PubMed  Google Scholar 

  44. Sabik JF III, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM (2005) Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg 79:544–551

    Article  PubMed  Google Scholar 

  45. Goldman S, Zadina K, Moritz T et al (2004) Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol 44:2149–2156

    Article  PubMed  Google Scholar 

  46. Shah P, Gordon I, Fuller J et al (2003) Factors affecting saphenous vein graft patency: clinical and angiographic study in 1,402 symptomatic patients operated between 1977 and 1999. J Thor Cardiovasc Surg 126(6):1972–1977

    Article  Google Scholar 

  47. Tatoulis J, Buxton BF, Fuller JA (2011) The right internal thoracic artery: the forgotten conduit—5,766 patients and 991 angiograms. Ann Thorac Surg 92(1):9–15 Discussion: 15–7

    Article  PubMed  Google Scholar 

  48. O’Brien SM, Shahian DM, DeLong ER et al (2007) Quality measurement in adult cardiac surgery: part 2—statistical considerations in composite measure scoring and provider rating. Ann Thorac Surg 83:S13–S26

    Article  PubMed  Google Scholar 

  49. Taggart DP, D’Amico R, Altman DG (2001) Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 358(9285):870–875

    Article  PubMed  CAS  Google Scholar 

  50. Pick AW, Orszulak TA, Anderson BJ, Schaff HV (1997) Single versus bilateral internal mammary artery grafts: 10-year outcome analysis. Ann Thorac Surg 64(3):599–605

    Article  PubMed  CAS  Google Scholar 

  51. Tatoulis J (2011) Giant leaps in surgical myocardial revascularisation. Heart Lung Circ 20(3):149–156

    Article  PubMed  Google Scholar 

  52. Lytle BW, Blackstone EH, Loop FD et al (1999) Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 117(5):855–872

    Article  PubMed  CAS  Google Scholar 

  53. Kinoshita T, Asai T, Nishimura O, Suzuki T, Kambara A, Matsubayashi K (2010) Off-pump bilateral versus single skeletonized internal thoracic artery grafting in patients with diabetes. Ann Thorac Surg 90(4):1173–1179

    Article  PubMed  Google Scholar 

  54. Taggart DP, Altman DG, Gray AM et al (2010) Randomized trial to compare bilateral vs. single internal mammary coronary artery bypass grafting: 1-year results of the arterial revascularisation trial (ART). Eur Heart J 31(20):2470–2481

    Article  PubMed  Google Scholar 

  55. Stevens LM, Carrier M, Perrault LP et al (2004) Single versus bilateral internal thoracic artery grafts with concomitant saphenous vein grafts for multivessel coronary artery bypass grafting: effects on mortality and event-free survival. J Thorac Cardiovasc Surg 127(5):1408–1415

    Article  PubMed  CAS  Google Scholar 

  56. Lytle BW, Blackstone EH, Sabik JF, Houghtaling P, Loop FD, Cosgrove DM (2004) The effect of bilateral internal thoracic artery grafting on survival during 20 postoperative years. Ann Thorac Surg 78(6):2005–2012 2012-4

    Article  PubMed  Google Scholar 

  57. Bonacchi M, Prifti E, Maiani M, Giunti G, Leacche M (2005) Skeletonized bilateral internal mammary arteries for non-elective surgical revascularization in unstable angina. Eur J Cardiothorac Surg 28(1):120–126

    Article  PubMed  Google Scholar 

  58. Berreklouw E, Rademakers PP, Koster JM, van Leur L, van der Wielen BJ, Westers P (2001) Better ischemic event-free survival after two internal thoracic artery grafts: 13 years of follow-up. Ann Thorac Surg 72(5):1535–1541

    Article  PubMed  CAS  Google Scholar 

  59. Giordano SH, Kuo YF, Freeman JL, Buchholz TA, Hortobagyi GN, Goodwin JS (2005) Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97(6):419–424

    Article  PubMed  Google Scholar 

  60. Hooning MJ, Aleman BM, van Rosmalen AJ, Kuenen MA, Klijn JG, van Leeuwen FE (2006) Cause-specific mortality in long-term survivors of breast cancer: a 25-year follow-up study. Int J Radiat Oncol Biol Phys 64(4):1081–1091

    Article  PubMed  Google Scholar 

  61. Patnaik JL, Byers T, Diguiseppi C, Dabelea D, Denberg TD (2011) Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res 13(3):R64

    Article  PubMed  Google Scholar 

  62. Correa CR, Litt HI, Hwang WT, Ferrari VA, Solin LJ, Harris EE (2007) Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol 25(21):3031–3037

    Article  PubMed  Google Scholar 

  63. Greer-Bayramoglu RJ, Chu MW, Fortin AJ (2011) Feasibility of internal mammary vessel use in breast reconstruction versus coronary artery bypass surgery: an anatomic, cadaveric evaluation. Plast Reconstr Surg 127(5):1783–1789

    Article  PubMed  CAS  Google Scholar 

  64. Black MJ, Chait L, O’Brien BM, Sykes PJ, Sharzer LA (1978) How soon may the axial vessels of a surviving free flap be safely ligated: a study in pigs. Br J Plast Surg 31(4):295–299

    PubMed  CAS  Google Scholar 

  65. Heymans O, Lemaire V, Preud’Homme L, Nélissen X, Verhelle N (2003) Free flap pedicle loss: clinical study on 8 cases. Ann Chir Plast Esthet 48(4):205–210

    Article  PubMed  CAS  Google Scholar 

  66. Khoo CT, Bailey BN (1982) The behaviour of free muscle and musculocutaneous flaps after early loss of axial blood supply. Br J Plast Surg 35(1):43–46

    Article  PubMed  CAS  Google Scholar 

  67. Salgado CJ, Smith A, Kim S, Higgins J, Behnam A, Herrera HR, Serletti JM (2002) Effects of late loss of arterial inflow on free flap survival. J Reconstr Microsurg 18(7):579–584

    Article  PubMed  Google Scholar 

  68. Wise SR, Harsha WJ, Kim N, Hayden RE (2011) Free flap survival despite early loss of the vascular pedicle. Head Neck 33(7):1068–1071

    Article  PubMed  Google Scholar 

  69. Rees MJ, Taylor GI (1986) A simplified lead oxide cadaver injection technique. Plast Reconstr Surg 77(1):141–145

    Article  PubMed  CAS  Google Scholar 

  70. Calafiore AM, Teodori G, Di Giammarco G et al (1997) Minimally invasive coronary artery bypass grafting on a beating heart. Ann Thorac Surg 63:S72–S75

    Article  PubMed  CAS  Google Scholar 

  71. Deja MA, Wos S, Gołba KS et al (1999) Intraoperative and laboratory evaluation of skeletonized versus pedicled internal thoracic artery. Ann Thorac Surg 68:2164–2168

    Article  PubMed  CAS  Google Scholar 

  72. Calafiore AM, Vitolla G, Iaco AL et al (1999) Bilateral internal mammary artery grafting: midterm results of pedicled vs. skeletonised conduits. Ann Thorac Surg 67(6):1637–1642

    Article  PubMed  CAS  Google Scholar 

  73. Higami T, Yamashita T, Nohara H, Iwahashi K, Shida T, Ogawa K (2001) Early results of coronary grafting using ultrasonically skeletonized internal thoracic arteries. Ann Thorac Surg 71:1224–1228

    Article  PubMed  CAS  Google Scholar 

  74. Bonacchi M, Battaglia F, Prifti E et al (2005) Early and late outcome of skeletonised bilateral internal mammary arteries anastomosed to the left coronary system. Heart 91:195–202

    Article  PubMed  CAS  Google Scholar 

  75. Gwozdziewicz M (2008) Left internal thoracic artery harvesting: measurement of the length required for coronary bypass surgery. Interact Cardiovasc Thorac Surg 7:1160–1161

    Article  PubMed  Google Scholar 

  76. Boonstra PW, Grandjean JG, Mariani MA (1997) Improved method for direct coronary grafting without CPB via anterolateral small thoracotomy. Ann Thorac Surg 63:567–569

    Article  PubMed  CAS  Google Scholar 

  77. Lazzara RR, Kidwell FE (1999) Minimally invasive direct coronary bypass versus cardiopulmonary technique: angiographic comparison. Ann Thorac Surg 67:500–503

    Article  PubMed  CAS  Google Scholar 

  78. Zenati M, Cohen HA, Griffith BP (1999) Alternative approach to multivessel coronary disease with integrated coronary revascularization. J Thorac Cardiovasc Surg 117(3):439–446

    Article  PubMed  CAS  Google Scholar 

  79. Cremer J, Mügge A, Wittwera T et al (1999) Early angiographic results after revascularization by minimally invasive direct coronary artery bypass (MIDCAB). Eur J Cardiothorac Surg 15:383–388

    Article  PubMed  CAS  Google Scholar 

  80. Trehan N, Malhotra R, Misrha Y, Shrivastva S, Kohli V, Mehta Y (2000) Comparison of ministernotomy with minithoracotomy regarding postoperative pain and internal mammary artery characteristics. Heart Surg Forum 3(4):300–306

    PubMed  CAS  Google Scholar 

  81. Ishikawa N, Wanatabe G, Iino K et al (2007) Robotic internal thoracic artery harvesting. Surg Today 37:944–946

    Article  PubMed  Google Scholar 

  82. Malata CM, Moses M, Mickute Z, Di Candia M (2011) Tips for successful microvascular abdominal flap breast reconstruction utilizing the “total rib preservation” technique for internal mammary vessel exposure. Ann Plast Surg 66(1):36–42

    Article  PubMed  CAS  Google Scholar 

  83. Arnez ZM, Valdatta L, Tyler MP, Planinsek F (1995) Anatomy of the internal mammary veins and their use in free TRAM flap breast reconstruction. Br J Plast Surg 48(8):540–545

    Article  PubMed  CAS  Google Scholar 

  84. Enajat M, Rozen WM, Whitaker IS, Smit JM, Acosta R (2010) A single center comparison of one versus two venous anastomoses in 564 consecutive DIEP flaps: investigating the effect on venous congestion and flap survival. Microsurgery 30(3):185–191

    Article  PubMed  Google Scholar 

  85. Liu TS, Ashjian P, Festekjian J (2007) Salvage of congested deep inferior epigastric perforator flap with a reverse flow venous anastomosis. Ann Plast Surg 59(2):214–217

    Article  PubMed  CAS  Google Scholar 

  86. Tran NV, Buchel EW, Convery PA (2007) Microvascular complications of DIEP flaps. Plast Reconstr Surg 119(5):1397–1405

    Article  PubMed  CAS  Google Scholar 

  87. Momeni A, Lee GK (2010) A case of intraoperative venous congestion of the entire DIEP-flap: a novel salvage technique and review of the literature. Microsurgery 30(6):443–446

    Article  PubMed  Google Scholar 

  88. Taylor GI, Caddy CM, Watterson PA, Crock JG (1990) The venous territories (venosomes) of the human body: experimental study and clinical implications. Plast Reconstr Surg 86(2):185–213

    Article  PubMed  CAS  Google Scholar 

  89. Moon HK, Taylor GI (1988) The vascular anatomy of rectus abdominis musculocutaneous flaps based on the deep superior epigastric system. Plast Reconstr Surg 82(5):815–832

    Article  PubMed  CAS  Google Scholar 

  90. Eom JS, Sun SH, Lee TJ (2011) Selection of the recipient veins for additional anastomosis of the superficial inferior epigastric vein in breast reconstruction with free transverse rectus abdominis musculocutaneous or deep inferior epigastric artery perforator flaps. Ann Plast Surg 67(5):505–509

    Article  PubMed  CAS  Google Scholar 

  91. Blondeel PN, Arnstein M, Verstraete K et al (2000) Venous congestion and blood flow in free transverse rectus abdominis myocutaneous and deep inferior epigastric perforator flaps. Plast Reconstr Surg 106(6):1295–1299

    Article  PubMed  CAS  Google Scholar 

  92. Villafane O, Gahankari D, Webster M (1999) Superficial inferior epigastric vein (SIEV): “lifeboat” for DIEP/TRAM flaps. Br J Plast Surg 52(7):599

    Article  PubMed  CAS  Google Scholar 

  93. Tutor EG, Auba C, Benito A, Rábago G, Kreutler W (2002) Easy venous superdrainage in DIEP flap breast reconstruction through the intercostal branch. J Reconstr Microsurg 18(7):595–598

    Article  PubMed  Google Scholar 

  94. Ali R, Bernier C, Lin YT, Ching WC et al (2010) Surgical strategies to salvage the venous compromised deep inferior epigastric perforator flap. Ann Plast Surg 65(4):398–406

    Article  PubMed  CAS  Google Scholar 

  95. Kerr-Valentic MA, Gottlieb LJ, Agarwal JP (2009) The retrograde limb of the internal mammary vein: an additional outflow option in DIEP flap breast reconstruction. Plast Reconstr Surg 124(3):717–721

    Article  PubMed  CAS  Google Scholar 

  96. Mohebali J, Gottlieb LJ, Agarwal JP (2010) Further validation for use of the retrograde limb of the internal mammary vein in deep inferior epigastric perforator flap breast reconstruction using laser-assisted indocyanine green angiography. J Reconstr Microsurg 26(2):131–135

    Article  PubMed  Google Scholar 

  97. Guzzetti T, Thione A (2001) Successful breast reconstruction with a perforator to deep inferior epigastric perforator flap. Ann Plast Surg 46(6):641–643

    Article  PubMed  CAS  Google Scholar 

  98. Park MC, Lee JH, Chung J, Lee SH (2003) Use of internal mammary vessel perforator as a recipient vessel for free TRAM breast reconstruction. Ann Plast Surg 50(2):132–137

    Article  PubMed  Google Scholar 

  99. Schwabegger AH, Gschnitzer C, Ninkovic MM (1999) Contour deformity at the internal mammary recipient site. Br J Plast Surg 52(8):674

    Article  PubMed  CAS  Google Scholar 

  100. Dupin CL, Allen RJ, Glass CA, Bunch R (1996) The internal mammary artery and vein as a recipient site for free-flap breast reconstruction: a report of 110 consecutive cases. Plast Reconstr Surg 98(4):685–689 Discussion: 690–692

    PubMed  CAS  Google Scholar 

  101. Rosson GD, Holton LH, Silverman RP, Singh NK, Nahabedian MY (2005) Internal mammary perforators: a cadaver study. J Reconstr Microsurg 21(4):239–242

    Article  PubMed  Google Scholar 

  102. Albertengo JB, Rodriguez A, Buncke HJ, Hall EJ (1981) A comparative study of flap survival rates in end-to-end and end-to-side microvascular anastomosis. Plast Reconstr Surg 67(2):194–199

    Article  PubMed  CAS  Google Scholar 

  103. Dotson RJ, Bishop AT, Wood MB, Schroeder A (1998) End-to-end versus end-to-side arterial anastomosis patency in microvascular surgery. Microsurgery 18(2):125–128

    Article  PubMed  CAS  Google Scholar 

  104. Frodel JL, Trachy R, Cummings CW (1986) End-to-end and end-to-side microvascular anastomoses: a comparative study. Microsurgery 7(3):117–123

    Article  PubMed  CAS  Google Scholar 

  105. Miyamoto S, Okazaki M, Ohura N, Shiraishi T, Takushima A, Harii K (2008) Comparative study of different combinations of microvascular anastomoses in a rat model: end-to-end, end-to-side, and flow-through anastomosis. Plast Reconstr Surg 122(2):449–455

    Article  PubMed  CAS  Google Scholar 

  106. Miyamoto S, Takushima A, Okazaki M, Ohura N, Momosawa A, Harii K (2009) Comparative study of different combinations of microvascular anastomosis types in a rat vasospasm model: versatility of end-to-side venous anastomosis in free tissue transfer for extremity reconstruction. J Trauma 66(3):831–834

    Article  PubMed  Google Scholar 

  107. Ueda K, Harii K, Nakatsuka T, Asato H, Yamada A (1996) Comparison of end-to-end and end-to-side venous anastomosis in free-tissue transfer following resection of head and neck tumors. Microsurgery 17(3):146–149

    Article  PubMed  CAS  Google Scholar 

  108. Clemens MW, Davison SP (2009) Buried deep inferior epigastric perforator flaps for complex head and neck contour defects. J Reconstr Microsurg 25(2):81–88

    Article  PubMed  Google Scholar 

  109. Puig LB, Sousa AH, Cividanes GV et al (1997) Eight years experience using the inferior epigastric artery for myocardial revascularization. Eur J Cardiothorac Surg 11:243–247

    Article  PubMed  CAS  Google Scholar 

  110. Cohen AJ, Ameika JA, Briggs RA, Grishkin BA, Helsel RA (1987) Retrograde flow in the internal mammary artery. Ann Thorac Surg 45(1):48–49

    Article  Google Scholar 

  111. Livi U, Bortolotti U, Mazzucco A, Miotto D, Gallucci V (1990) Coronary artery bypass with inverted internal mammary artery: angiographic evidence of late graft patency. Eur J Cardiothorac Surg 4(2):107–108

    Article  PubMed  CAS  Google Scholar 

  112. Temple CL, Strom EA, Youssef A, Langstein HN (2005) Choice of recipient vessels in delayed TRAM flap breast reconstruction after radiotherapy. Plast Reconstr Surg 115(1):105–113

    PubMed  CAS  Google Scholar 

  113. Ninković MM, Schwabegger AH, Anderl H (1998) Internal mammary vessels as a recipient site. Clin Plast Surg 25(2):213–221

    PubMed  Google Scholar 

  114. Dupin CL, Allen RJ, Glass CA, Bunch R (1996) The internal mammary artery and vein as a recipient site for free-flap breast reconstruction: a report of 110 consecutive cases. Plast Reconstr Surg 98(4):685–689 Discussion: 690–692

    PubMed  CAS  Google Scholar 

  115. Moran SL, Nava G, Behnam AB, Serlettie JM (2003) An outcome analysis comparing the thoracodorsal and internal mammary vessels as recipient sites for microvascular breast reconstruction: A prospective study of 100 patients. Plast Reconstr Surg 111(6):1876–1882

    Article  PubMed  Google Scholar 

  116. Feng LJ (1997) Recipient vessels in free-flap breast reconstruction: a study of the internal mammary and thoracodorsal vessels. Plast Reconstr Surg 99(2):405–416

    Article  PubMed  CAS  Google Scholar 

  117. Majumder S, Batchelor AG (1999) Internal mammary vessels as recipients for free TRAM breast reconstruction: aesthetic and functional considerations. Br J Plast Surg 52(4):286–289

    Article  PubMed  CAS  Google Scholar 

  118. Darcy CM, Smit JM, Audolfsson T, Acosta R (2011) Surgical technique: the intercostal space approach to the internal mammary vessels in 463 microvascular breast reconstructions. J Plast Reconstr Aesthet Surg 64(1):58–62

    Article  PubMed  Google Scholar 

  119. Serletti JM, Moran SL, Orlando GS, Fox I (1999) Thoracodorsal vessels as recipient vessels for the free TRAM flap in delayed breast reconstruction. Plast Reconstr Surg 104(6):1649–1655

    Article  PubMed  CAS  Google Scholar 

  120. Robb GL (1998) Thoracodorsal vessels as a recipient site. Clin Plast Surg 25(2):207–211

    PubMed  CAS  Google Scholar 

  121. Lantieri LA, Mitrofanoff M, Rimareix F, Gaston E, Raulo Y, Baruch JP (1999) Use of circumflex scapular vessels as a recipient pedicle for autologous breast reconstruction: a report of 40 consecutive cases. Plast Reconstr Surg 104(7):2049–2053

    Article  PubMed  CAS  Google Scholar 

  122. Verma S, Szmitko PE, Weisel RD, Bonneau D, Latter D, Errett L, LeClerc Y, Fremes SE (2004) Should radial arteries be used routinely for coronary artery bypass grafting? Circulation 110(5):e40–e46

    Article  PubMed  Google Scholar 

  123. Loop FD, Lytle BW, Cosgrove DM et al (1986) Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 314(1):1–6

    Article  PubMed  CAS  Google Scholar 

  124. Desai ND, Cohen EA, Naylor CD, Fremes SE (2004) Radial artery patency study investigators. A randomized comparison of radial-artery and saphenous-vein coronary bypass grafts. N Engl J Med 351(22):2302–2309

    Article  PubMed  CAS  Google Scholar 

  125. Hayward PA, Buxton BF (2007) Contemporary coronary graft patency: 5-year observational data from a randomized trial of conduits. Ann Thorac Surg 84(3):795–799

    Article  PubMed  Google Scholar 

  126. Achouh P, Isselmou KO, Boutekadjirt R et al (2011) Reappraisal of a 20-year experience with the radial artery as a conduit for coronary bypass grafting. Eur J Cardiothorac Surg (Epub ahead of print)

  127. Achouh P, Boutekadjirt R, Toledano D et al (2010) Long-term (5- to 20-year) patency of the radial artery for coronary bypass grafting. J Thorac Cardiovasc Surg 140(1):73–79 79. e1–2

    Article  PubMed  Google Scholar 

  128. Cameron J, Trivedi S, Stafford G, Bett JH (2004) Five-year angiographic patency of radial artery bypass grafts. Circulation 110(11 Suppl 1):II23–II26

    PubMed  Google Scholar 

  129. Cordeiro PG (2008) Breast reconstruction after surgery for breast cancer. N Engl J Med 359(15):1590–1601

    Article  PubMed  CAS  Google Scholar 

  130. Serletti JM, Fosnot J, Nelson JA, Disa JJ, Bucky LP (2011) Breast reconstruction after breast cancer. Plast Reconstr Surg 127(6):124e–135e

    Article  PubMed  CAS  Google Scholar 

  131. Marín-Gutzke M, Sánchez-Olaso A (2010) Reconstructive surgery in young women with breast cancer. Breast Cancer Res Treat 123(Suppl 1):67–74

    Article  PubMed  Google Scholar 

  132. Ahmed S, Snelling A, Bains M, Whitworth IH (2005) Breast reconstruction. BMJ 330(7497):943–948

    Article  PubMed  CAS  Google Scholar 

  133. Kroll SS, Evans GR, Reece GP et al (1996) Comparison of resource costs between implant-based and TRAM flap breast reconstruction. Plast Reconstr Surg 97(2):364–372

    Article  PubMed  CAS  Google Scholar 

  134. Spear SL, Mardini S, Ganz JC (2003) Resource cost comparison of implant-based breast reconstruction versus TRAM flap breast reconstruction. Plast Reconstr Surg 112(1):101–105

    Article  PubMed  Google Scholar 

  135. Kroll SS, Schusterman MA, Reece GP, Miller MJ, Robb G, Evans G (1995) Abdominal wall strength, bulging, and hernia after TRAM flap breast reconstruction. Plast Reconstr Surg 96(3):616–619

    Article  PubMed  CAS  Google Scholar 

  136. Selber JC, Samra F, Bristol M, Sonnad SS, Vega S, Wu L, Serletti JM (2008) A head-to-head comparison between the muscle-sparing free TRAM and the SIEA flaps: is the rate of flap loss worth the gain in abdominal wall function? Plast Reconstr Surg 122(2):348–355

    Article  PubMed  CAS  Google Scholar 

  137. Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman A, Division of Health Statistics (2010) National Hospital Discharge Survey: 2007 summary. National Health Statistics Reports. http://www.cdc.gov/nchs/data/nhsr/nhsr029.pdf. Accessed 25 Jan 2011

Download references

Acknowledgments

Funding

Iain S. Whitaker was supported by the Dowager Countess Eleanor Peel Research Trust, London, UK.

Conflict of interest

The authors declare that there is no source of financial or other support, or any financial or professional relationships that may pose a competing interest.

Ethical approval

Institutional ethical approval was obtained prospectively, and conforms to the provisions of the Declaration of Helsinki in 1995. The subject gave informed consent and patient anonymity has been preserved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren M. Rozen.

Additional information

Warren M. Rozen and Xuan Ye are equal first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozen, W.M., Ye, X., Guio-Aguilar, P.L. et al. Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications. Breast Cancer Res Treat 134, 181–198 (2012). https://doi.org/10.1007/s10549-011-1948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1948-6

Keywords

Navigation